2-4 Softmax 回归的从零开始实现

就像我们从零开始实现线性回归一样, 我们认为softmax回归也是重要的基础,因此应该知道实现softmax回归的细节。 本节我们将使用刚刚在2-3节中引入的Fashion-MNIST数据集, 并设置数据迭代器的批量大小为256

python 复制代码
import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256 # 每次随机读取256张图片
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) # 返回训练集的iter迭代器和测试集的iter迭代器

初始化模型参数

和之前线性回归的例子一样,这里的每个样本都将用固定长度的向量表示。 原始数据集中的每个样本都是 28 × 28 28 \times 28 28×28的图像。 本节将展平每个图像,把它们看作长度为 784 784 784的向量(对于softmax回归而言,我的输入需要是一个向量)。 在后面的章节中,我们将讨论能够利用图像空间结构的特征, 但现在我们暂时只把每个像素位置看作一个特征。(拉长以后,会损失掉很多空间信息)

回想一下,在softmax回归中,我们的输出与类别一样多 。 因为我们的数据集有 10 10 10个类别,所以网络输出维度为 10 10 10。 因此,权重将构成一个 784 × 10 784 \times 10 784×10的矩阵, 偏置将构成一个 1 × 10 1 \times 10 1×10的行向量(联系softmax回归那里的图和公式例子来理解 )。 与线性回归一样,我们将使用正态分布初始化我们的权重 W W W,偏置初始化为 0 0 0。

python 复制代码
num_inputs = 784  # softmax的输入是长为784的行向量
num_outputs = 10  # 模型输出的维度为10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
# 将权重初始化成一个高斯随机分布的值,均值为0,方差为0.01,行数为输入的个数,列数为输出的个数,requires_grad=True表示需要计算梯度
b = torch.zeros(num_outputs, requires_grad=True)
# 对每一个输出,都需要一个偏移,所以偏移是一个长为10的向量,同样,我们需要计算梯度

定义softmax操作

在实现softmax回归模型之前,我们简要回顾一下sum运算符如何沿着张量中的特定维度工作。 如前所述, 给定一个矩阵 X X X,我们可以对所有元素求和(默认情况下)。 也可以只求同一个轴上的元素,即同一列(轴 0 0 0)或同一行(轴 1 1 1)。 如果 X X X是一个形状为 ( 2 , 3 ) (2, 3) (2,3)的张量,我们对列进行求和, 则结果将是一个具有形状 ( 3 , ) (3,) (3,)的向量。 当调用sum运算符时,我们可以指定保持在原始张量的轴数,而不折叠求和的维度。 这将产生一个具有形状 ( 1 , 3 ) (1, 3) (1,3)的二维张量。

python 复制代码
X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)
# 按照维度0来求和,那就是把我的形状shape中的第0号元素从2变成了1
# 按照维度1来求和,那就是把我的形状shape中第一个元素变成1,那么它就变成了一个2*1的列向量
# keepdim=True 表示还是一个2维的矩阵
# X.sum(0, keepdim=True) 按行求和
# X.sum(1, keepdim=True) 按列求和

回想一下,实现softmax由三个步骤组成:

  1. 对每个项求幂(使用exp);

  2. 对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;

  3. 将每一行除以其规范化常数,确保结果的和为1。

在查看代码之前,我们回顾一下这个表达式:

分母或规范化常数,有时也称为配分函数(其对数称为对数-配分函数)。 该名称来自统计物理学中一个模拟粒子群分布的方程。

python 复制代码
def softmax(X):
    X_exp = torch.exp(X) # 对每一个元素作指数计算
    partition = X_exp.sum(1, keepdim=True)  
    # 我们按照维度为1来求和,就是把每一行进行求和,keepdim=True保持二维矩阵的shape
    return X_exp / partition  # 这里应用了广播机制

正如上述代码,对于任何随机输入,我们将每个元素变成一个非负数。 此外,依据概率原理,每行总和为1。

python 复制代码
X = torch.normal(0, 1, (2, 5))  # 初始化了一个均值为0,方差为1的,2行5列的矩阵X
X_prob = softmax(X)  # 把它放进softmax之后,它的形状没有发生变化
X_prob, X_prob.sum(1) # 按照行来做加法的话,会得到一个长为2的行向量,每一行的值为1,表示上面的概率每一行的和为1

注意,虽然这在数学上看起来是正确的,但我们在代码实现中有点草率。 矩阵中的非常大或非常小的元素可能造成数值上溢或下溢,但我们没有采取措施来防止这点。


定义模型

定义softmax操作后,我们可以实现softmax回归模型。 下面的代码定义了输入如何通过网络映射到输出。 注意,将数据传递到模型之前,我们使用reshape函数将每张原始图像展平为向量。

python 复制代码
def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
    # 对于输入X,我们需要的是一个批量大小 x 输入维数的矩阵,所以我们把它reshape成一个2d的矩阵,-1表示让它自己算一下,这个维度表示批量大小,其实也是样本数量
    # W.shape[0]是784
    # X被reshape成一个256*784的矩阵
    # 然后我们再对X和W进行矩阵乘法
    # 通过广播机制,加上我们的偏移
    # 最后放进softmax里面
    # 拿到一个所有的元素值大于0,而且行和为1的输出

定义损失函数

接下来,我们实现交叉熵损失函数 。 这可能是深度学习中最常见的损失函数,因为目前分类问题的数量远远超过回归问题的数量。

在讲代码之前,我们补一个细节,怎么样在我的预测值里面根据我的标号把我们对应的预测值拿出来?

python 复制代码
y = torch.tensor([0, 2]) # 创建一个长度为2的向量,这里表示两个真实的标号,这里标号的含义是该样本被分为第几类!就是实际该样本属于下标为几的类
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]]) # 对2个样本作3类预测
y_hat[[0, 1], y] 

解释:

  • 对y_hat中的第0个样本,拿出下标为0的预测值
  • 对y_hat中的第1个样本,拿出下标为2的预测值

现在我们只需一行代码就可以实现交叉熵损失函数。

python 复制代码
def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])
    # range(len(y_hat)) 生成一个0-y_hat-1的行向量,也就是说对y_hat中的每一行(每一个样本)而言
    # 拿出来对应真实类别标号的预测值
    # 取个log
    # 求负数

cross_entropy(y_hat, y)

2.3026是样本0的损失,0.6931是样本1的损失,损失都是大于0的。

分类精度

因为我们做的是分类问题,所以我们要判断说预测的类别和真实的类别是不是正确的。

我们这里实现一个小函数,说给定我们的预测值y_hat和我们的真实值y,我们来计算我们分类正确的类别数。

python 复制代码
def accuracy(y_hat, y):
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1: # 如果y_hat是一个二维矩阵的话,列数也大于1
        y_hat = y_hat.argmax(axis=1)  # 按照每一行求argmax,每一行中元素值最大的那个下标,存到y_hat里面,这就是我预测的分类类别
    cmp = y_hat.type(y.dtype) == y   # 可能我的y_hat和我的y数据类型不一样,把y_hat转成y的数据类型,作比较,变成一个bool的tensor
    return float(cmp.type(y.dtype).sum())  # 把结果转成和y一样的数据类型,求和,再转成浮点数

accuracy(y_hat, y) / len(y) # 找出来预测正确的样本数 除以 y的长度,就是预测正确的概率
# 为什么除以y的长度,y的长度就是真实需要预测样本的总数

同样,对于任意数据迭代器data_iter可访问的数据集, 我们可以评估在任意模型net的精度。

python 复制代码
def evaluate_accuracy(net, data_iter):  
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):  # 如果是用torch nn实现的模型
        net.eval()  # 将模型设置为评估模式,意思是说不要计算梯度了,我们只做一个前向传递
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
            # 先把X放到net里面算出评测值
            # 然后计算所有的预测正确的样本数
            # y.numel() 样本总数
            # 放进一个Accumulator累加器里
    return metric[0] / metric[1]  # metric[0]分类正确的样本数 metric[1]总样本数 做除法,就能算出模型的精度了 

这里定义一个实用程序类Accumulator,用于对多个变量进行累加。 在上面的evaluate_accuracy函数中, 我们在Accumulator实例中创建了2个变量, 分别用于存储正确预测的数量和预测的总数量。 当我们遍历数据集时,两者都将随着时间的推移而累加。

python 复制代码
class Accumulator:  
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]

训练

在我们看过线性回归实现, softmax回归的训练过程代码应该看起来非常眼熟。 在这里,我们重构训练过程的实现以使其可重复使用。 首先,我们定义一个函数来训练一个迭代周期。 请注意,updater是更新模型参数的常用函数,它接受批量大小作为参数。 它可以是d2l.sgd函数,也可以是框架的内置优化函数。

python 复制代码
def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):       # 如果我是用nn 模块
        net.train()                      # 告诉我的模型开始训练模式,即告诉pytorch我要计算梯度
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()  # 先把梯度设成0
            l.mean().backward()  # 再计算梯度
            updater.step()   # 再更新一遍参数
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()   # 求和并算梯度
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())   # 记录一下分类的正确的个数
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]

在展示训练函数的实现之前,我们定义一个在动画中绘制数据的实用程序类Animator, 它能够简化其余部分的代码。

这是一个小动画,可以让我们看到模型在训练中的变化。

python 复制代码
class Animator:
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

接下来我们实现一个训练函数, 它会在train_iter访问到的训练数据集上训练一个模型net。 该训练函数将会运行多个迭代周期(由num_epochs指定)。 在每个迭代周期结束时,利用test_iter访问到的测试数据集对模型进行评估。 我们将利用Animator类来可视化训练进度。

python 复制代码
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc']) 
   	# 上面这个是用来可视化的,可以忽略
   	# 扫n遍数据
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)  # 训练一次,更新我们的模型
        test_acc = evaluate_accuracy(net, test_iter)   # 在测试数据集上评估精度
        animator.add(epoch + 1, train_metrics + (test_acc,))  # 可视化的显示一遍
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

作为一个从零开始的实现,我们使用小批量随机梯度下降 来优化模型的损失函数,设置学习率为0.1

python 复制代码
lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

现在,我们训练模型10个迭代周期。 请注意,迭代周期(num_epochs)和学习率(lr)都是可调节的超参数。 通过更改它们的值,我们可以提高模型的分类精度。

python 复制代码
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

随着训练的进行,精度在不断的上升,损失在下降。


预测

现在训练已经完成,我们的模型已经准备好对图像进行分类预测。 给定一系列图像,我们将比较它们的实际标签(文本输出的第一行)和模型预测(文本输出的第二行)。

python 复制代码
def predict_ch3(net, test_iter, n=6):
    """预测标签"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

小结

  • 借助softmax回归,我们可以训练多分类的模型。

  • 训练softmax回归循环模型与训练线性回归模型非常相似:先读取数据,再定义模型和损失函数,然后使用优化算法训练模型。大多数常见的深度学习模型都有类似的训练过程。

相关推荐
通信.萌新28 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
ARM+FPGA+AI工业主板定制专家30 分钟前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
赛丽曼33 分钟前
机器学习-分类算法评估标准
人工智能·机器学习·分类
伟贤AI之路36 分钟前
从音频到 PDF:AI 全流程打造完美英文绘本教案
人工智能
weixin_3077791337 分钟前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
helianying5542 分钟前
云原生架构下的AI智能编排:ScriptEcho赋能前端开发
前端·人工智能·云原生·架构
池央1 小时前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
小猪咪piggy2 小时前
【深度学习入门】深度学习知识点总结
人工智能·深度学习
汤姆和佩琦2 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn