Duee1.0信息提取句子级数据预处理

import os

import sys

import json

def read_by_lines(path):

result = list()

with open(path, "r", encoding="utf8") as infile:

for line in infile:

result.append(line.strip())

return result

def write_by_lines(path, data):

with open(path, "w", encoding="utf8") as outfile:

outfile.write(d + "\\n") for d in data

def data_process(path, model="trigger", is_predict=False):

def label_data(data, start, l, _type):

for i in range(start, start + l):#从起始索引到结束

suffix = "B-" if i == start else "I-" #前缀

data[i] = "{}{}".format(suffix, _type)

return data

sentences = []

output = ["text_a"] if is_predict else ["text_a\tlabel"]#文本,标签

with open(path) as f:

for line in f:

d_json = json.loads(line.strip())#每一行

_id = d_json["id"]#id

text_a = [

"," if t == " " or t == "\n" or t == "\t" else t

for t in list(d_json["text"].lower())

]# 文本

if is_predict:

sentences.append({"text": d_json["text"], "id": _id})

output.append('\002'.join(text_a))

else:

if model == "trigger":

labels = ["O"] * len(text_a)#标签初始化为全部非实体

if len(d_json.get("event_list", [])) == 0:

continue

for event in d_json.get("event_list"):

event_type = event["event_type"]#事件类型

start = event["trigger_start_index"]#触发词起始索引

trigger = event["trigger"]#触发池

#为触发词设置labels

labels = label_data(labels, start, len(trigger),

event_type)

output.append("{}\t{}".format('\002'.join(text_a),

'\002'.join(labels)))

elif model == "role":

labels = ["O"] * len(text_a)#标签

if len(d_json.get("event_list", [])) == 0:

continue

for event in d_json.get("event_list"):

for arg in event["arguments"]:

role_type = arg["role"]#论元角色类型

argument = arg["argument"]#论元

start = arg["argument_start_index"]#论元起始

labels = label_data(labels, start, len(argument),

role_type)

output.append("{}\t{}".format('\002'.join(text_a),

'\002'.join(labels)))

return output

def schema_process(path, model="trigger"):

def label_add(labels, _type):

if "B-{}".format(_type) not in labels:#不在里面就添加

labels.extend(["B-{}".format(_type), "I-{}".format(_type)])#B-,I-

return labels

labels = []#存放事件类型标签或角色标签

for line in read_by_lines(path):

d_json = json.loads(line.strip())

if model == "trigger":

labels = label_add(labels, d_json["event_type"])

elif model == "role":

for role in d_json["role_list"]:

labels = label_add(labels, role["role"])

labels.append("O")

tags = []

for index, label in enumerate(labels):

tags.append("{}\t{}".format(index, label))

return tags

conf_dir = "./conf/DuEE1.0"

schema_path ='./datasets/DuEE_1_0/event_schema.json'

tags_trigger_path = "{}/trigger_tag.dict".format(conf_dir)

tags_role_path = "{}/role_tag.dict".format(conf_dir)

read_by_lines(schema_path)[0]

!unzip DuEE_1_0.zip -d ./datasets/

tags_trigger = schema_process(schema_path, "trigger")

os.makedirs(conf_dir,exist_ok=True)

write_by_lines(tags_trigger_path, tags_trigger)

tags_role = schema_process(schema_path, "role")

write_by_lines(tags_role_path, tags_role)

data_dir = "./datasets/DuEE1.0"

trigger_save_dir = "{}/trigger".format(data_dir)

role_save_dir = "{}/role".format(data_dir)

if not os.path.exists(trigger_save_dir):

os.makedirs(trigger_save_dir)

if not os.path.exists(role_save_dir):

os.makedirs(role_save_dir)

train_tri = data_process("./datasets/DuEE_1_0/train.json","trigger")

read_by_lines('./datasets/DuEE_1_0/train.json')[0]

write_by_lines("{}/train.tsv".format(trigger_save_dir), train_tri)

dev_tri = data_process("./datasets/DuEE_1_0/dev.json","trigger")

write_by_lines("{}/dev.tsv".format(trigger_save_dir), dev_tri)

test_tri = data_process("./datasets/DuEE_1_0/test.json", "trigger")

write_by_lines("{}/test.tsv".format(trigger_save_dir), test_tri)

train_role = data_process("./datasets/DuEE_1_0/train.json", "role")

write_by_lines("{}/train.tsv".format(role_save_dir), train_role)

dev_role = data_process("./datasets/DuEE_1_0/dev.json", "role")

write_by_lines("{}/dev.tsv".format(role_save_dir), dev_role)

test_role = data_process("./datasets/DuEE_1_0/test.json", "role")

write_by_lines("{}/test.tsv".format(role_save_dir), test_role)

相关推荐
doubao3635 分钟前
如何在海量文献中高效筛选有价值信息
人工智能·学习·自然语言处理·aigc·ai工具·ai检索
赋创小助手1 小时前
英特尔确认取消 8 通道 Diamond Rapids:服务器 CPU 战局再度升级
服务器·图像处理·人工智能·深度学习·计算机视觉·自然语言处理·自动驾驶
xinyu_Jina1 天前
AI 塔罗占卜(塔罗之心):大语言模型在主观情境中“意图聚焦”与“心理模型”的构建
人工智能·语言模型·自然语言处理
uncle_ll1 天前
李宏毅NLP-14-NLP任务
人工智能·自然语言处理
1***81532 天前
免费的自然语言处理教程,NLP入门
人工智能·自然语言处理
小oo呆2 天前
【自然语言处理与大模型】BERTopic主题建模
人工智能·自然语言处理
2501_941225682 天前
人工智能与自然语言处理技术在智能客服与用户体验优化中的创新应用研究
人工智能·自然语言处理·ux
ModestCoder_2 天前
Tokenization的演进:从NLP基石到多模态AI的“通用翻译器”
开发语言·人工智能·自然语言处理·机器人·具身智能
MARS_AI_2 天前
云蝠智能 VoiceAgent 2.0:全栈语音交互能力升级
人工智能·自然语言处理·交互·信息与通信·agi
汗流浃背了吧,老弟!3 天前
预训练语言模型(Pre-trained Language Model, PLM)介绍
深度学习·语言模型·自然语言处理