蒸馏知识点笔记

蒸馏(Distillation)

模型蒸馏是一种通过将大模型(教师模型)的知识传递给小模型(学生模型)来优化小模型性能的方法。蒸馏通常包括以下几种形式:

1. 软标签蒸馏(Soft Label Distillation)

通过教师模型的软标签(soft labels)来训练学生模型,使学生模型学习教师模型的输出分布。

python 复制代码
import torch
import torch.nn as nn

# 定义教师模型和学生模型
teacher_model = ...
student_model = ...

# 定义损失函数
criterion = nn.KLDivLoss(reduction='batchmean')

# 教师模型生成软标签
teacher_model.eval()
with torch.no_grad():
    teacher_outputs = teacher_model(inputs)
soft_labels = torch.softmax(teacher_outputs / temperature, dim=1)

# 学生模型预测
student_outputs = student_model(inputs)
loss = criterion(torch.log_softmax(student_outputs / temperature, dim=1), soft_labels)

# 反向传播和优化
loss.backward()
optimizer.step()

2. 特征蒸馏(Feature Distillation)

通过让学生模型学习教师模型中间层的特征表示来优化学生模型性能。

python 复制代码
class FeatureExtractor(nn.Module):
    def __init__(self, model):
        super(FeatureExtractor, self).__init__()
        self.features = nn.Sequential(*list(model.children())[:-1])
    
    def forward(self, x):
        return self.features(x)

teacher_feature_extractor = FeatureExtractor(teacher_model)
student_feature_extractor = FeatureExtractor(student_model)

# 获取特征表示
teacher_features = teacher_feature_extractor(inputs)
student_features = student_feature_extractor(inputs)

# 定义特征蒸馏损失
feature_distillation_loss = nn.MSELoss()(student_features, teacher_features)

# 反向传播和优化
feature_distillation_loss.backward()
optimizer.step()

3. 组合蒸馏(Combined Distillation)

结合软标签蒸馏和特征蒸馏,利用教师模型的输出分布和特征表示来训练学生模型。

python 复制代码
# 定义损失函数
criterion = nn.KLDivLoss(reduction='batchmean')
mse_loss = nn.MSELoss()

# 教师模型生成软标签
teacher_model.eval()
with torch.no_grad():
    teacher_outputs = teacher_model(inputs)
soft_labels = torch.softmax(teacher_outputs / temperature, dim=1)

# 学生模型预测
student_outputs = student_model(inputs)
soft_label_loss = criterion(torch.log_softmax(student_outputs / temperature, dim=1), soft_labels)

# 获取特征表示
teacher_features = teacher_feature_extractor(inputs)
student_features = student_feature_extractor(inputs)
feature_loss = mse_loss(student_features, teacher_features)

# 组合损失
total_loss = soft_label_loss + alpha * feature_loss

# 反向传播和优化
total_loss.backward()
optimizer.step()

通过上述蒸馏技术,可以有效地优化模型结构,减少计算开销,并在保持模型性能的前提下,提高模型的推理速度和部署效率。

相关推荐
DisonTangor2 分钟前
阿里开源Qwen3-Omni-30B-A3B三剑客——Instruct、Thinking 和 Captioner
人工智能·语言模型·开源·aigc
独孤--蝴蝶3 分钟前
AI人工智能-机器学习-第一周(小白)
人工智能·机器学习
西柚小萌新5 分钟前
【深入浅出PyTorch】--上采样+下采样
人工智能·pytorch·python
bnsarocket11 分钟前
Verilog和FPGA的自学笔记2——点亮LED
笔记·fpga开发·verilog·自学
丁学文武32 分钟前
大语言模型(LLM)是“预制菜”? 从应用到底层原理,在到中央厨房的深度解析
人工智能·语言模型·自然语言处理·大语言模型·大模型应用·预制菜
fie888937 分钟前
基于MATLAB的声呐图像特征提取与显示
开发语言·人工智能
未来之窗软件服务1 小时前
自己写算法(九)网页数字动画函数——东方仙盟化神期
前端·javascript·算法·仙盟创梦ide·东方仙盟·东方仙盟算法
豐儀麟阁贵1 小时前
基本数据类型
java·算法
文火冰糖的硅基工坊2 小时前
[嵌入式系统-100]:常见的IoT(物联网)开发板
人工智能·物联网·架构
刘晓倩2 小时前
实战任务二:用扣子空间通过任务提示词制作精美PPT
人工智能