蒸馏知识点笔记

蒸馏(Distillation)

模型蒸馏是一种通过将大模型(教师模型)的知识传递给小模型(学生模型)来优化小模型性能的方法。蒸馏通常包括以下几种形式:

1. 软标签蒸馏(Soft Label Distillation)

通过教师模型的软标签(soft labels)来训练学生模型,使学生模型学习教师模型的输出分布。

python 复制代码
import torch
import torch.nn as nn

# 定义教师模型和学生模型
teacher_model = ...
student_model = ...

# 定义损失函数
criterion = nn.KLDivLoss(reduction='batchmean')

# 教师模型生成软标签
teacher_model.eval()
with torch.no_grad():
    teacher_outputs = teacher_model(inputs)
soft_labels = torch.softmax(teacher_outputs / temperature, dim=1)

# 学生模型预测
student_outputs = student_model(inputs)
loss = criterion(torch.log_softmax(student_outputs / temperature, dim=1), soft_labels)

# 反向传播和优化
loss.backward()
optimizer.step()

2. 特征蒸馏(Feature Distillation)

通过让学生模型学习教师模型中间层的特征表示来优化学生模型性能。

python 复制代码
class FeatureExtractor(nn.Module):
    def __init__(self, model):
        super(FeatureExtractor, self).__init__()
        self.features = nn.Sequential(*list(model.children())[:-1])
    
    def forward(self, x):
        return self.features(x)

teacher_feature_extractor = FeatureExtractor(teacher_model)
student_feature_extractor = FeatureExtractor(student_model)

# 获取特征表示
teacher_features = teacher_feature_extractor(inputs)
student_features = student_feature_extractor(inputs)

# 定义特征蒸馏损失
feature_distillation_loss = nn.MSELoss()(student_features, teacher_features)

# 反向传播和优化
feature_distillation_loss.backward()
optimizer.step()

3. 组合蒸馏(Combined Distillation)

结合软标签蒸馏和特征蒸馏,利用教师模型的输出分布和特征表示来训练学生模型。

python 复制代码
# 定义损失函数
criterion = nn.KLDivLoss(reduction='batchmean')
mse_loss = nn.MSELoss()

# 教师模型生成软标签
teacher_model.eval()
with torch.no_grad():
    teacher_outputs = teacher_model(inputs)
soft_labels = torch.softmax(teacher_outputs / temperature, dim=1)

# 学生模型预测
student_outputs = student_model(inputs)
soft_label_loss = criterion(torch.log_softmax(student_outputs / temperature, dim=1), soft_labels)

# 获取特征表示
teacher_features = teacher_feature_extractor(inputs)
student_features = student_feature_extractor(inputs)
feature_loss = mse_loss(student_features, teacher_features)

# 组合损失
total_loss = soft_label_loss + alpha * feature_loss

# 反向传播和优化
total_loss.backward()
optimizer.step()

通过上述蒸馏技术,可以有效地优化模型结构,减少计算开销,并在保持模型性能的前提下,提高模型的推理速度和部署效率。

相关推荐
OC溥哥999几秒前
Paper MinecraftV3.0重大更新(下界更新)我的世界C++2D版本隆重推出,拷贝即玩!
java·c++·算法
Jayden_Ruan1 分钟前
C++蛇形方阵
开发语言·c++·算法
ggaofeng2 分钟前
运行调试大语言模型
人工智能·语言模型·自然语言处理
星火开发设计3 分钟前
C++ map 全面解析与实战指南
java·数据结构·c++·学习·算法·map·知识
执笔论英雄4 分钟前
【RL] advantages白化与 GRPO中 advantages均值,怎么变化,
算法·均值算法
2301_800895107 分钟前
hh的蓝桥杯每日一题
算法·职场和发展·蓝桥杯
老鱼说AI12 分钟前
现代计算机系统1.2:程序的生命周期从 C/C++ 到 Rust
c语言·c++·算法
rayufo14 分钟前
深度学习对三维图形点云数据分类
人工智能·深度学习·分类
仰泳的熊猫15 分钟前
题目1099:校门外的树
数据结构·c++·算法·蓝桥杯
求梦82017 分钟前
【力扣hot100题】反转链表(18)
算法·leetcode·职场和发展