pytorch 是如何调用 cusolver API 的调用

0,环境

ubuntu 22.04

pytorch 2.3.1

x86

RTX 3080

cuda 12.2

1, 示例代码

以potrs为例;

hello_cholesk.py

复制代码
""" 
hello_cholesky.py
step1, Cholesky decompose;
step2, inverse A;
step3, Cholesky again;
python3 hello_cholesky.py --size 256  --cuda_device_id  0
"""
import torch
import time
import argparse


def cholesky_measure(A, cuda_dev=0):
    dev = torch.device(f"cuda:{cuda_dev}")
    A = A.to(dev)

    print(f'Which device to compute : {dev}')
  
    SY = 100* torch.mm(A, A.t()) +  200*torch.eye(N, device=dev)

    to_start = time.time() 
    SY = torch.linalg.cholesky(SY)
    SY = torch.cholesky_inverse(SY)
    SY = torch.linalg.cholesky(SY, upper=True)
    run_time = time.time() - to_start   
     
    print(f'The device: {dev}, run: {run_time:.3f} second')
    print(f'SY : {SY}')
    print(f'****'*20)

    return run_time

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='dim of A.')
    parser.add_argument('--N', type=int, default=512, required=True, help='dim of A')
    args = parser.parse_args()
    N = args.N

    print(f'A N : {N}')    
    A = torch.randn(N, N)
       
    cuda_dev = 0
    time_dev0 = cholesky_measure(A, cuda_dev)    
    time_dev1 = cholesky_measure(A, cuda_dev+1)    
    print(f'time_dev0 /time_dev1 = {time_dev0/time_dev1:.2f} ')

运行效果:

2,调用栈跟踪

跟踪如下调用关系:

复制代码
Tensor cholesky_inverse(const Tensor &input, bool upper)    aten/src/ATen/native/BatchLinearAlgebra.cpp
	static Tensor& cholesky_inverse_out_info(Tensor& result, Tensor& infos, const Tensor& input, bool upper)
	DECLARE_DISPATCH(cholesky_inverse_fn, cholesky_inverse_stub);
	REGISTER_ARCH_DISPATCH(cholesky_inverse_stub, DEFAULT, &cholesky_inverse_kernel_impl);
	Tensor& cholesky_inverse_kernel_impl(Tensor &result, Tensor& infos, bool upper)
	Tensor& cholesky_inverse_kernel_impl_cusolver(Tensor &result, Tensor& infos, bool upper)
	void _cholesky_inverse_cusolver_potrs_based(Tensor& result, Tensor& infos, bool upper)
	template<typename scalar_t>
	inline static void apply_cholesky_cusolver_potrs(Tensor& self_working_copy, const Tensor& A_column_major_copy, bool upper, Tensor& infos)
	at::cuda::solver::potrs<scalar_t>(
      handle, uplo, n_32, nrhs_32,
      A_ptr + i * A_matrix_stride,
      lda_32,
      self_working_copy_ptr + i * self_matrix_stride,
      ldb_32,
      infos_ptr
    );

一些细节:

相关推荐
咚咚王者18 小时前
人工智能之数学基础 线性代数:第二章 向量空间
人工智能·线性代数
skywalk816318 小时前
SCNet 双DCU异构卡vllm推理部署DeepSeek-Coder-V2-Lite-Instruct
人工智能·vllm·scnet·deepseek-coder
aesthetician19 小时前
用铜钟听歌,发 SCI !
前端·人工智能·音频
UI设计兰亭妙微19 小时前
告别调度繁琐:北京兰亭妙微拆解货运 APP 的 “轻量高效设计密码”
人工智能·ui设计外包
Mxsoft61919 小时前
采样率设低致频谱混叠!某次谐波分析误判,提高采样率精准定位!
人工智能
有痣青年19 小时前
GPT‑5.2 翻车?GDPval 70.9% 的“基准胜利”为何换不来好口碑?
人工智能·openai·ai编程
平凡之路无尽路19 小时前
智能体设计模式:构建智能系统的实践指南
人工智能·设计模式·自然语言处理·nlp·aigc·vllm
骚戴19 小时前
架构视角:Gemini 3.0 Pro 原生多模态能力的边界与工程落地
人工智能·大模型·llm·api·ai gateway
2401_8414956419 小时前
【自然语言处理】汉语语料库建设的深层困境与现实挑战
人工智能·自然语言处理·语料库·标注·汉语语料库·中文信息处理·语料
zhaodiandiandian19 小时前
AI赋能医学教育:从知识传递到能力塑造的革命
人工智能