pytorch 是如何调用 cusolver API 的调用

0,环境

ubuntu 22.04

pytorch 2.3.1

x86

RTX 3080

cuda 12.2

1, 示例代码

以potrs为例;

hello_cholesk.py

""" 
hello_cholesky.py
step1, Cholesky decompose;
step2, inverse A;
step3, Cholesky again;
python3 hello_cholesky.py --size 256  --cuda_device_id  0
"""
import torch
import time
import argparse


def cholesky_measure(A, cuda_dev=0):
    dev = torch.device(f"cuda:{cuda_dev}")
    A = A.to(dev)

    print(f'Which device to compute : {dev}')
  
    SY = 100* torch.mm(A, A.t()) +  200*torch.eye(N, device=dev)

    to_start = time.time() 
    SY = torch.linalg.cholesky(SY)
    SY = torch.cholesky_inverse(SY)
    SY = torch.linalg.cholesky(SY, upper=True)
    run_time = time.time() - to_start   
     
    print(f'The device: {dev}, run: {run_time:.3f} second')
    print(f'SY : {SY}')
    print(f'****'*20)

    return run_time

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='dim of A.')
    parser.add_argument('--N', type=int, default=512, required=True, help='dim of A')
    args = parser.parse_args()
    N = args.N

    print(f'A N : {N}')    
    A = torch.randn(N, N)
       
    cuda_dev = 0
    time_dev0 = cholesky_measure(A, cuda_dev)    
    time_dev1 = cholesky_measure(A, cuda_dev+1)    
    print(f'time_dev0 /time_dev1 = {time_dev0/time_dev1:.2f} ')

运行效果:

2,调用栈跟踪

跟踪如下调用关系:

Tensor cholesky_inverse(const Tensor &input, bool upper)    aten/src/ATen/native/BatchLinearAlgebra.cpp
	static Tensor& cholesky_inverse_out_info(Tensor& result, Tensor& infos, const Tensor& input, bool upper)
	DECLARE_DISPATCH(cholesky_inverse_fn, cholesky_inverse_stub);
	REGISTER_ARCH_DISPATCH(cholesky_inverse_stub, DEFAULT, &cholesky_inverse_kernel_impl);
	Tensor& cholesky_inverse_kernel_impl(Tensor &result, Tensor& infos, bool upper)
	Tensor& cholesky_inverse_kernel_impl_cusolver(Tensor &result, Tensor& infos, bool upper)
	void _cholesky_inverse_cusolver_potrs_based(Tensor& result, Tensor& infos, bool upper)
	template<typename scalar_t>
	inline static void apply_cholesky_cusolver_potrs(Tensor& self_working_copy, const Tensor& A_column_major_copy, bool upper, Tensor& infos)
	at::cuda::solver::potrs<scalar_t>(
      handle, uplo, n_32, nrhs_32,
      A_ptr + i * A_matrix_stride,
      lda_32,
      self_working_copy_ptr + i * self_matrix_stride,
      ldb_32,
      infos_ptr
    );

一些细节:

相关推荐
青椒大仙KI1110 分钟前
24/11/14 算法笔记<强化学习> 马尔可夫
人工智能·笔记·机器学习
GOTXX18 分钟前
NAT、代理服务与内网穿透技术全解析
linux·网络·人工智能·计算机网络·智能路由器
进击的小小学生28 分钟前
2024年第45周ETF周报
大数据·人工智能
TaoYuan__1 小时前
机器学习【激活函数】
人工智能·机器学习
TaoYuan__1 小时前
机器学习的常用算法
人工智能·算法·机器学习
正义的彬彬侠1 小时前
协方差矩阵及其计算方法
人工智能·机器学习·协方差·协方差矩阵
致Great1 小时前
Invar-RAG:基于不变性对齐的LLM检索方法提升生成质量
人工智能·大模型·rag
华奥系科技1 小时前
智慧安防丨以科技之力,筑起防范人贩的铜墙铁壁
人工智能·科技·安全·生活
ZPC82102 小时前
OpenCV—颜色识别
人工智能·opencv·计算机视觉
Mr.简锋2 小时前
vs2022搭建opencv开发环境
人工智能·opencv·计算机视觉