大语言模型系列-Transformer介绍

大语言模型系列:Transformer介绍

引言

在自然语言处理(NLP)领域,Transformer模型已经成为了许多任务的标准方法。自从Vaswani等人在2017年提出Transformer以来,它已经彻底改变了NLP模型的设计。本文将介绍Transformer模型的基本结构和关键技术细节,并通过具体的公式来阐述其工作原理。

Transformer模型概述

Transformer模型主要由编码器(Encoder)和解码器(Decoder)两个部分组成,每个部分又由多个相同的层(Layer)堆叠而成。每一层都包含两个子层:多头自注意力机制(Multi-Head Self-Attention Mechanism)和前馈神经网络(Feed-Forward Neural Network)。

编码器

编码器由N个相同的编码器层(Encoder Layer)堆叠而成。每个编码器层包含以下两个子层:

  1. 多头自注意力机制(Multi-Head Self-Attention Mechanism)
  2. 前馈神经网络(Feed-Forward Neural Network)

解码器

解码器也由N个相同的解码器层(Decoder Layer)堆叠而成。与编码器层类似,每个解码器层包含以下三个子层:

  1. 多头自注意力机制(Masked Multi-Head Self-Attention Mechanism)
  2. 多头注意力机制(Multi-Head Attention Mechanism)
  3. 前馈神经网络(Feed-Forward Neural Network)

注意力机制(Attention Mechanism)

注意力机制是Transformer的核心。它通过计算输入序列中每个位置的加权平均值来捕捉序列中不同位置之间的依赖关系。注意力机制的计算过程包括三个步骤:计算查询(Query)、键(Key)和值(Value)的线性变换,计算注意力权重,并对值进行加权求和。

公式

  1. 线性变换:

Q = X W Q , K = X W K , V = X W V Q = XW^Q, \quad K = XW^K, \quad V = XW^V Q=XWQ,K=XWK,V=XWV

其中,( X )是输入序列的表示,( W^Q )、( W^K )和( W^V )是可学习的参数矩阵。

  1. 注意力权重计算:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中, d k d_k dk是键的维度。

多头注意力机制(Multi-Head Attention Mechanism)

多头注意力机制通过引入多个注意力头(Attention Heads),可以在不同的子空间中并行计算注意力。多头注意力机制的公式如下:

  1. 分头计算:

head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) headi=Attention(QWiQ,KWiK,VWiV)

  1. 头的拼接:

    MultiHead ( Q , K , V ) = Concat ( head 1 , head 2 , ... , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \text{head}_2, \ldots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,head2,...,headh)WO

    其中,QKV是可学习的参数矩阵。

位置编码(Positional Encoding)

由于Transformer模型没有使用循环神经网络(RNN)或卷积神经网络(CNN),它不能直接捕捉序列中的位置信息。因此,Transformer通过添加位置编码(Positional Encoding)来引入位置信息。位置编码的公式如下:

P E ( p o s , 2 i ) = sin ⁡ ( p o s 1000 0 2 i / d m o d e l ) PE_{(pos, 2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right) PE(pos,2i)=sin(100002i/dmodelpos)

P E ( p o s , 2 i + 1 ) = cos ⁡ ( p o s 1000 0 2 i / d m o d e l ) PE_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right) PE(pos,2i+1)=cos(100002i/dmodelpos)

其中, p o s pos pos是位置, i i i是维度索引, d m o d e l d_{model} dmodel是模型的维度。

前馈神经网络(Feed-Forward Neural Network)

在每个编码器层和解码器层中,前馈神经网络(FFN)通过两个线性变换和一个激活函数来处理每个位置的表示。前馈神经网络的公式如下:

FFN ( x ) = max ⁡ ( 0 , x W 1 + b 1 ) W 2 + b 2 \text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2 FFN(x)=max(0,xW1+b1)W2+b2

其中, W 1 W_1 W1、 W 2 W_2 W2、 b 1 b_1 b1和 b 2 b_2 b2是可学习的参数矩阵和偏置向量。

总结

Transformer模型通过自注意力机制和多头注意力机制,有效地捕捉序列中不同位置之间的依赖关系,并通过位置编码引入位置信息。它的并行计算能力使其在处理大规模数据时表现出色,已经成为NLP任务中的主流模型。

希望本文对您理解Transformer模型有所帮助。如果您有任何问题或建议,欢迎在评论区留言。


参考文献

  1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
相关推荐
井底哇哇4 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证4 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩5 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控5 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
一水鉴天5 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python
倔强的石头1065 小时前
解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
人工智能·架构
佛州小李哥6 小时前
Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
说私域6 小时前
社群裂变+2+1链动新纪元:S2B2C小程序如何重塑企业客户管理版图?
大数据·人工智能·小程序·开源
程序猿阿伟7 小时前
《探秘鸿蒙Next:如何保障AI模型轻量化后多设备协同功能一致》
人工智能·华为·harmonyos
2401_897579657 小时前
AI赋能Flutter开发:ScriptEcho助你高效构建跨端应用
前端·人工智能·flutter