大语言模型系列-Transformer介绍

大语言模型系列:Transformer介绍

引言

在自然语言处理(NLP)领域,Transformer模型已经成为了许多任务的标准方法。自从Vaswani等人在2017年提出Transformer以来,它已经彻底改变了NLP模型的设计。本文将介绍Transformer模型的基本结构和关键技术细节,并通过具体的公式来阐述其工作原理。

Transformer模型概述

Transformer模型主要由编码器(Encoder)和解码器(Decoder)两个部分组成,每个部分又由多个相同的层(Layer)堆叠而成。每一层都包含两个子层:多头自注意力机制(Multi-Head Self-Attention Mechanism)和前馈神经网络(Feed-Forward Neural Network)。

编码器

编码器由N个相同的编码器层(Encoder Layer)堆叠而成。每个编码器层包含以下两个子层:

  1. 多头自注意力机制(Multi-Head Self-Attention Mechanism)
  2. 前馈神经网络(Feed-Forward Neural Network)

解码器

解码器也由N个相同的解码器层(Decoder Layer)堆叠而成。与编码器层类似,每个解码器层包含以下三个子层:

  1. 多头自注意力机制(Masked Multi-Head Self-Attention Mechanism)
  2. 多头注意力机制(Multi-Head Attention Mechanism)
  3. 前馈神经网络(Feed-Forward Neural Network)

注意力机制(Attention Mechanism)

注意力机制是Transformer的核心。它通过计算输入序列中每个位置的加权平均值来捕捉序列中不同位置之间的依赖关系。注意力机制的计算过程包括三个步骤:计算查询(Query)、键(Key)和值(Value)的线性变换,计算注意力权重,并对值进行加权求和。

公式

  1. 线性变换:

Q = X W Q , K = X W K , V = X W V Q = XW^Q, \quad K = XW^K, \quad V = XW^V Q=XWQ,K=XWK,V=XWV

其中,( X )是输入序列的表示,( W^Q )、( W^K )和( W^V )是可学习的参数矩阵。

  1. 注意力权重计算:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

其中, d k d_k dk是键的维度。

多头注意力机制(Multi-Head Attention Mechanism)

多头注意力机制通过引入多个注意力头(Attention Heads),可以在不同的子空间中并行计算注意力。多头注意力机制的公式如下:

  1. 分头计算:

head i = Attention ( Q W i Q , K W i K , V W i V ) \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) headi=Attention(QWiQ,KWiK,VWiV)

  1. 头的拼接:

    MultiHead ( Q , K , V ) = Concat ( head 1 , head 2 , ... , head h ) W O \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \text{head}_2, \ldots, \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,head2,...,headh)WO

    其中,QKV是可学习的参数矩阵。

位置编码(Positional Encoding)

由于Transformer模型没有使用循环神经网络(RNN)或卷积神经网络(CNN),它不能直接捕捉序列中的位置信息。因此,Transformer通过添加位置编码(Positional Encoding)来引入位置信息。位置编码的公式如下:

P E ( p o s , 2 i ) = sin ⁡ ( p o s 1000 0 2 i / d m o d e l ) PE_{(pos, 2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right) PE(pos,2i)=sin(100002i/dmodelpos)

P E ( p o s , 2 i + 1 ) = cos ⁡ ( p o s 1000 0 2 i / d m o d e l ) PE_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right) PE(pos,2i+1)=cos(100002i/dmodelpos)

其中, p o s pos pos是位置, i i i是维度索引, d m o d e l d_{model} dmodel是模型的维度。

前馈神经网络(Feed-Forward Neural Network)

在每个编码器层和解码器层中,前馈神经网络(FFN)通过两个线性变换和一个激活函数来处理每个位置的表示。前馈神经网络的公式如下:

FFN ( x ) = max ⁡ ( 0 , x W 1 + b 1 ) W 2 + b 2 \text{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2 FFN(x)=max(0,xW1+b1)W2+b2

其中, W 1 W_1 W1、 W 2 W_2 W2、 b 1 b_1 b1和 b 2 b_2 b2是可学习的参数矩阵和偏置向量。

总结

Transformer模型通过自注意力机制和多头注意力机制,有效地捕捉序列中不同位置之间的依赖关系,并通过位置编码引入位置信息。它的并行计算能力使其在处理大规模数据时表现出色,已经成为NLP任务中的主流模型。

希望本文对您理解Transformer模型有所帮助。如果您有任何问题或建议,欢迎在评论区留言。


参考文献

  1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
相关推荐
冰蓝蓝2 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界10 分钟前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术1 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck1 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409661 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python
洛阳泰山2 小时前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb
程序猿阿伟2 小时前
《Java 优化秘籍:计算密集型 AI 任务加速指南》
java·开发语言·人工智能
说私域2 小时前
社交媒体形象打造中的“号设化”与开源AI智能名片商城小程序的应用
人工智能·小程序·媒体
是十一月末2 小时前
Opencv之对图片的处理和运算
人工智能·python·opencv·计算机视觉