文章目录
- 1.斐波那契数列
- 2.太波那契数列
- 3.二维递推问题
- 4.实战
-
- [4.1 力扣509 斐波那契数](#4.1 力扣509 斐波那契数)
- [4.2 力扣70 爬楼梯](#4.2 力扣70 爬楼梯)
- [4.3 力扣119 杨辉三角||](#4.3 力扣119 杨辉三角||)
递推最通俗的理解就是数列,递推和数列的关系就好比 算法 和 数据结构 的关系,数列有点
像数据结构中的线性表(可以是顺序表,也可以是链表,一般情况下是顺序表),而递推就是一
个循环或者迭代的枚举过程。
递推本质上是数学问题,所以有同学问算法是不是需要数学非常好,也并不是,你会发现
这些数学只不过是初中高中我们学烂的东西,高考都经历了,这些东西又何足为惧!?
1.斐波那契数列
斐波那契数(通常用F(n)表示)形成的序列称为 斐波那契数列 。该数列由0和1开始,后面
的每一项数字都是前面两项数字的和。也就是:
F(0)=0,F(1)=1
F(n)=F(n -1)+ F(n- 2),其中n>1,给定n(0 ≤n≤ 30),请计算 F(n)
拿到这个题目,我们首先来看题目范围,最多不超过 30,那是因为斐波那契数的增长速度很
快,是指数级别的。所以如果n 很大,就会超过 c语言 中32位整型的范围。这是一个最基础的递
推题,递推公式都已经告诉你了,我们要做的就是利用一个循环来实现这个递推。
我们只需要用一个 F[31]数组,初始化好 F[0]和 F[1],然后按照给定的公式循环计算就可以。
c
int febonacci(int n) {
int F[30] = {0,1};
for (int i = 2; i < 30; i++) {
F[i] = F[i - 1] + F[i - 2];
}
return F[29]
}
2.太波那契数列
泰波那契序列Tn定义如下:
T(0) = 0, T(1) = 1,T(2)=1
且在 n>2的条件下 T(n)=T(n-1)+T(n-2)+T(n-3),给你整数n,请返回第n个泰波那契
数T(n)的值。
如果已经理解斐波那契数列,那么这个问题也不难,只不过初始化的时候,需要初始化前三个数,
并且在循环迭代计算的时候,当前数的值需要前三个数的值累加和。像这样:
c
int tribonacci(int n) {
int F[30] = {0,1,1};
for (int i = 3; i < 30; i++) {
F[i] = F[i - 1] = F[i - 2] + F[i - 3];
}
return F[29];
}
3.二维递推问题
像斐波那契数列这种问题,是一个一维的数组来解决的,有些时候,一维解决不了的时候,我
们就需要升高一个维度来看问题了。
长度为n(1<n<40)的只由'A'、'C'、"M'三种字符组成的字符串(可以只有其中一种或两种字
但绝对不能有其他字符)且禁止出现 M 相邻的情况,问这样的串有多少种?
考虑长度为n,且以'A' 结尾的串有f[n][0]种、以'C' 结尾的串有f[n][1]种、以'' 结尾的串有
f[n][2]种
4.实战
4.1 力扣509 斐波那契数
斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。
c
int fib(int n){
if(n == 0){
return 0;
}
else if (n == 1){
return 1;
}
return fib(n - 1) + fib(n - 2);
}
4.2 力扣70 爬楼梯
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
c
int climbStairs(int n) {
int f[46];
f[0] = 1;
f[1] = 1;
for(int i = 2; i <= n; i++){
f[i] = f[i - 1] + f[i - 2];
}
return f[n];
}
4.3 力扣119 杨辉三角||
给定一个非负索引 rowIndex
,返回「杨辉三角」的第 rowIndex
行。
c
int* getRow(int rowIndex, int* returnSize) {
int f[34][34];
for(int i = 0; i <= rowIndex; i++){
for(int j = 0; j <= i; j++){
if(j ==0 || j == i){
f[i][j] = 1;
}
else {
f[i][j] = f[i - 1][j] + f[i - 1][j - 1];
}
}
}
int* ret = (int *)malloc (sizeof(int) * (rowIndex + 1));
for(int j = 0; j <= rowIndex; j++){
ret[j] = f[rowIndex][j];
}
*returnSize = rowIndex + 1;
return ret;
}