pytorch 指定GPU设备

使用os.environ["CUDA_VISIBLE_DEVICES"]

这种方法是通过环境变量限制可见的CUDA设备,从而在多个GPU的机器上只让PyTorch看到并使用指定的GPU。这种方式的好处是所有后续的CUDA调用都会使用这个GPU,并且代码中不需要显式地指定设备索引。

python 复制代码
import os

# 设置只使用2号GPU
os.environ["CUDA_VISIBLE_DEVICES"] = '2'

import torch
import torch.nn as nn

# 检查PyTorch是否检测到GPU
if torch.cuda.is_available():
    print(f"Using GPU: {torch.cuda.get_device_name(0)}")  # 注意这里是0,因为只有一个可见的GPU
else:
    print("No GPU available, using CPU instead.")

# 定义模型
class YourModel(nn.Module):
    def __init__(self):
        super(YourModel, self).__init__()
        self.layer = nn.Linear(10, 1)
    
    def forward(self, x):
        return self.layer(x)

# 创建模型并移动到GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = YourModel().to(device)

# 示例数据和前向传播
input_data = torch.randn(5, 10).to(device)
output = model(input_data)
print(output)

直接指定设备索引

这种方法是在代码中直接指定要使用的设备索引,无需修改环境变量。这种方式更加显式,并且可以在同一脚本中使用多个不同的GPU。

python 复制代码
import torch
import torch.nn as nn

# 检查设备是否可用并打印设备名称
if torch.cuda.is_available():
    device = torch.device("cuda:2")  # 直接指定设备索引
    print(f"Using GPU: {torch.cuda.get_device_name(2)}")
else:
    device = torch.device("cpu")
    print("No GPU available, using CPU instead.")

# 定义模型
class YourModel(nn.Module):
    def __init__(self):
        super(YourModel, self).__init__()
        self.layer = nn.Linear(10, 1)
    
    def forward(self, x):
        return self.layer(x)

# 创建模型并移动到指定的GPU
model = YourModel().to(device)

# 示例数据和前向传播
input_data = torch.randn(5, 10).to(device)
output = model(input_data)
print(output)
相关推荐
dme.5 分钟前
Javascript之DOM操作
开发语言·javascript·爬虫·python·ecmascript
加油吧zkf15 分钟前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf15 分钟前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
t_hj16 分钟前
python规划
python
峙峙峙28 分钟前
线性代数--AI数学基础复习
人工智能·线性代数
czhc114007566331 分钟前
Linux 76 rsync
linux·运维·python
weiwuxian33 分钟前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能
Codebee34 分钟前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
说私域1 小时前
基于开源AI智能名片链动2+1模式的S2B2C商城小程序:门店私域流量与视频号直播融合的生态创新研究
人工智能·小程序·开源
Ronin-Lotus1 小时前
深度学习篇---Yolov系列
人工智能·深度学习