算法 —— 前缀和

目录

【模板】一维前缀和

【模板】二维前缀和

寻找数组的中心下标

除⾃⾝以外数组的乘积

矩阵区域和


【模板】一维前缀和

如果我们用暴力解法,每次都要遍历一遍数组,一共遍历q次,这样时间复杂度太高,这时候我们构造一个前缀和数组,将1 - n区间内各区间的和存入进去,需要前n项和直接访问dp前缀和数组的下标位置即可。代码如下:

cpp 复制代码
#include<iostream>
#include<vector>
using namespace std;

int main()
{
	// 读入数据
	int n, q; cin >> n >> q;
	// n + 1 添加了虚拟节点0
	vector<int> arr(n + 1); // 默认全部为0
	for (int i = 1; i <= n; i++)
		cin >> arr[i];

	// 预处理出一个前缀和数组
	vector<long long> dp(n + 1); // 防止溢出
	for (int i = 1; i <= n; i++)
		dp[i] = dp[i - 1] + arr[i];

	// 使用前缀和数组
	int l = 0, r = 0;
	while (q--)
	{
		cin >> l >> r;
		cout << dp[r] - dp[l - 1] << endl;
	}
	return 0;
}

【模板】二维前缀和

预处理一个前缀和矩阵,将**(1,1)到(i,j)位置的所有元素和存在这个dp数组中,通过面积计算方法**,求出最终答案,代码如下:

cpp 复制代码
int main()
{
	// 读入数据
	int n, m, q; cin >> n >> m >> q;
	vector<vector<int>> arr(n + 1, vector<int>(m + 1));
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			cin >> arr[i][j];

	// 预处理一个前缀和数组
	vector<vector<long long>> dp(n + 1, vector<long long>(m + 1)); // 防止溢出
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + arr[i][j] - dp[i - 1][j - 1];

	// 使用前缀和数组
	while (q--)
	{
		int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2;
		cout << dp[x2][y2] - dp[x2][y1 - 1] - dp[x1 - 1][y2] + dp[x1 - 1][y1 - 1] << endl;
	}
	return 0;
}

寻找数组的中心下标

注意边界情况,此处不需要开n+1个空间的前缀和数组,因为原数组中有一个元素要作为本题的中心下标,代码如下:

cpp 复制代码
class Solution {
public:
	int pivotIndex(vector<int>& nums) {
		int n = nums.size();
		vector<int> f(n), g(n);
		// 预处理前缀和数组  从左向右
		for (int i = 1; i < n; i++)
			f[i] = f[i - 1] + nums[i - 1];
		// 预处理后缀和数组  从右向左
		for (int i = n - 2; i >= 0; i--)
			g[i] = g[i + 1] + nums[i + 1];
		for (int i = 0; i < n; i++)
		{
			if (g[i] == f[i])
				return i;
		}
		return -1;
	}
};

除⾃⾝以外数组的乘积

和上题意思类似,不过要注意的是,边界情况f(0)和g(n-1)要初始化为1而不是0,代码如下:

cpp 复制代码
class Solution {
public:
	vector<int> productExceptSelf(vector<int>& nums) {
		int n = nums.size();
		vector<int> f(n), g(n), ret(n);
		// 处理边界情况
		f[0] = 1; g[n - 1] = 1;
		// 预处理前缀积数组  从左向右
		for (int i = 1; i < n; i++)
			f[i] = f[i - 1] * nums[i - 1];
		// 预处理后缀积数组  从右向左
		for (int i = n - 2; i >= 0; i--)
			g[i] = g[i + 1] * nums[i + 1];
		for (int i = 0; i < n; i++)
			ret[i] = f[i] * g[i];
		return ret;
	}
};

矩阵区域和

注意:二维前缀和数组要多开一行一列,否则会产生越界访问,此外dp数组和ans数组之间需要调整下标才能匹配位置,ans[ 0 ][ 0 ]对应的是dp [ 1 ][ 1 ]这个位置。代码如下:

cpp 复制代码
class Solution {
public:
	vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {
		int m = mat.size(), n = mat[0].size();  // m 为行 n 为列
		// 预处理一个二维前缀和数组 dp
		vector<vector<int>> dp(m + 1, vector<int>(n + 1));
		for (int i = 1; i <= m; i++)
			for (int j = 1; j <= n; j++)
				dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + mat[i - 1][j - 1] - dp[i - 1][j - 1];
		// 存放答案的二维数组 ans
		vector<vector<int>> ans(m, vector<int>(n));
		for (int i = 0; i < m; i++)
		{
			for (int j = 0; j < n; j++)
			{
				int x1 = max(0, i - k) + 1, y1 = max(0, j - k) + 1;
				int x2 = min(m - 1, i + k) + 1, y2 = min(n - 1, j + k) + 1;
				ans[i][j] = dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1];
			}
		}
		return ans;
	}
};
相关推荐
BB_CC_DD25 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
YHY_13s29 分钟前
访问者模式
c++·访问者模式
我也不曾来过11 小时前
list底层原理
数据结构·c++·list
A charmer1 小时前
C++ 日志系统实战第三步:熟悉掌握各种设计模式
c++·日志系统
Ethon_王1 小时前
STL容器适配器详解:queue篇
c++
静听夜半雨1 小时前
CANoe入门——3、新建LIN工程及LIN DataBase(LDF文件)的创建
网络·数据库·c++·编辑器
梁下轻语的秋缘2 小时前
每日c/c++题 备战蓝桥杯 ([洛谷 P1226] 快速幂求模题解)
c++·算法·蓝桥杯
CODE_RabbitV2 小时前
【深度强化学习 DRL 快速实践】逆向强化学习算法 (IRL)
算法
虾球xz2 小时前
游戏引擎学习第244天: 完成异步纹理下载
c++·学习·游戏引擎
矛取矛求2 小时前
C++区别于C语言的提升用法(万字总结)
c语言·c++