【Pytorch】数据集的加载和处理(二)

【Pytorch】数据集的加载和处理(一)
Pytorch中张量可以是一维、二维、三维或者更高维度的数据结构。一维张量类似于向量,二维张量类似于矩阵,三维张量类似一系列矩阵的堆叠。

目录

将张量包装为数据集

创建数据加载器

数据转换(图像转换)


将张量包装为数据集

导入MNIST训练数据集并提取数据和标签

复制代码
import torch
import torchvision
from torchvision import datasets
train_data=datasets.MNIST("./data",train=True,download=True)
x_train, y_train=train_data.data,train_data.targets

导入MNIST验证数据集并提取数据和标签

复制代码
val_data=datasets.MNIST("./data", train=False, download=True)
x_val,y_val=val_data.data, val_data.targets

使用 TensorDataset类将张量包装为数据集

复制代码
from torch.utils.data import TensorDataset
train_ds = TensorDataset(x_train, y_train)
val_ds = TensorDataset(x_val, y_val)

for x,y in train_ds:
    print(x.shape,y.item())
    break

创建数据加载器

通过DataLoader从数据集创建数据加载器

复制代码
from torch.utils.data import DataLoader
train_dl = DataLoader(train_ds, batch_size=100)
val_dl = DataLoader(val_ds, batch_size=100)

for xb,yb in train_dl:
    print(xb.shape)
    print(yb.shape)
    break

数据转换(图像转换)

通过 transform 类进行简单的图像转换

导入库和训练数据集

复制代码
import torchvision
import matplotlib.pyplot as plt
from torchvision import datasets
from torchvision import transforms
train_data=datasets.MNIST("./data", train=True, download=True)

借助transform类定义旋转

复制代码
data_transform = transforms.Compose
([
    transforms.RandomHorizontalFlip(p=1),
    transforms.RandomVerticalFlip(p=1),
    transforms.ToTensor(),
])

对训练数据集中图像进行旋转并打印对比

复制代码
img = train_data[5][0]
img_tr=data_transform(img)
img_tr_np=img_tr.numpy()

plt.subplot(1,2,1)
plt.imshow(img,cmap="gray")
plt.title("original")
plt.subplot(1,2,2)
plt.imshow(img_tr_np[0],cmap="gray");
plt.title("transformed 180")
相关推荐
ai产品老杨3 分钟前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd1 小时前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室3 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
luckys.one3 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
湫兮之风4 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
大翻哥哥4 小时前
Python 2025:量化金融与智能交易的新纪元
开发语言·python·金融
Christo34 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823404 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT5 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
zhousenshan5 小时前
Python爬虫常用框架
开发语言·爬虫·python