【Pytorch】数据集的加载和处理(二)

【Pytorch】数据集的加载和处理(一)
Pytorch中张量可以是一维、二维、三维或者更高维度的数据结构。一维张量类似于向量,二维张量类似于矩阵,三维张量类似一系列矩阵的堆叠。

目录

将张量包装为数据集

创建数据加载器

数据转换(图像转换)


将张量包装为数据集

导入MNIST训练数据集并提取数据和标签

import torch
import torchvision
from torchvision import datasets
train_data=datasets.MNIST("./data",train=True,download=True)
x_train, y_train=train_data.data,train_data.targets

导入MNIST验证数据集并提取数据和标签

val_data=datasets.MNIST("./data", train=False, download=True)
x_val,y_val=val_data.data, val_data.targets

使用 TensorDataset类将张量包装为数据集

from torch.utils.data import TensorDataset
train_ds = TensorDataset(x_train, y_train)
val_ds = TensorDataset(x_val, y_val)

for x,y in train_ds:
    print(x.shape,y.item())
    break

创建数据加载器

通过DataLoader从数据集创建数据加载器

from torch.utils.data import DataLoader
train_dl = DataLoader(train_ds, batch_size=100)
val_dl = DataLoader(val_ds, batch_size=100)

for xb,yb in train_dl:
    print(xb.shape)
    print(yb.shape)
    break

数据转换(图像转换)

通过 transform 类进行简单的图像转换

导入库和训练数据集

import torchvision
import matplotlib.pyplot as plt
from torchvision import datasets
from torchvision import transforms
train_data=datasets.MNIST("./data", train=True, download=True)

借助transform类定义旋转

data_transform = transforms.Compose
([
    transforms.RandomHorizontalFlip(p=1),
    transforms.RandomVerticalFlip(p=1),
    transforms.ToTensor(),
])

对训练数据集中图像进行旋转并打印对比

img = train_data[5][0]
img_tr=data_transform(img)
img_tr_np=img_tr.numpy()

plt.subplot(1,2,1)
plt.imshow(img,cmap="gray")
plt.title("original")
plt.subplot(1,2,2)
plt.imshow(img_tr_np[0],cmap="gray");
plt.title("transformed 180")
相关推荐
bst@微胖子27 分钟前
Python高级语法之selenium
开发语言·python·selenium
Luis Li 的猫猫1 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
查理零世1 小时前
【蓝桥杯集训·每日一题2025】 AcWing 6118. 蛋糕游戏 python
python·算法·蓝桥杯
魔尔助理顾问3 小时前
一个简洁高效的Flask用户管理示例
后端·python·flask
java1234_小锋3 小时前
一周学会Flask3 Python Web开发-request请求对象与url传参
开发语言·python·flask·flask3
木觞清3 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
诚信爱国敬业友善6 小时前
常见排序方法的总结归类
开发语言·python·算法
wyg_0311137 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
架构默片7 小时前
【JAVA工程师从0开始学AI】,第五步:Python类的“七十二变“——当Java的铠甲遇见Python的液态金属
java·开发语言·python
陈敬雷-充电了么-CEO兼CTO8 小时前
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
人工智能·神经网络·自然语言处理·chatgpt·大模型·aigc·deepseek