【Pytorch】数据集的加载和处理(二)

【Pytorch】数据集的加载和处理(一)
Pytorch中张量可以是一维、二维、三维或者更高维度的数据结构。一维张量类似于向量,二维张量类似于矩阵,三维张量类似一系列矩阵的堆叠。

目录

将张量包装为数据集

创建数据加载器

数据转换(图像转换)


将张量包装为数据集

导入MNIST训练数据集并提取数据和标签

复制代码
import torch
import torchvision
from torchvision import datasets
train_data=datasets.MNIST("./data",train=True,download=True)
x_train, y_train=train_data.data,train_data.targets

导入MNIST验证数据集并提取数据和标签

复制代码
val_data=datasets.MNIST("./data", train=False, download=True)
x_val,y_val=val_data.data, val_data.targets

使用 TensorDataset类将张量包装为数据集

复制代码
from torch.utils.data import TensorDataset
train_ds = TensorDataset(x_train, y_train)
val_ds = TensorDataset(x_val, y_val)

for x,y in train_ds:
    print(x.shape,y.item())
    break

创建数据加载器

通过DataLoader从数据集创建数据加载器

复制代码
from torch.utils.data import DataLoader
train_dl = DataLoader(train_ds, batch_size=100)
val_dl = DataLoader(val_ds, batch_size=100)

for xb,yb in train_dl:
    print(xb.shape)
    print(yb.shape)
    break

数据转换(图像转换)

通过 transform 类进行简单的图像转换

导入库和训练数据集

复制代码
import torchvision
import matplotlib.pyplot as plt
from torchvision import datasets
from torchvision import transforms
train_data=datasets.MNIST("./data", train=True, download=True)

借助transform类定义旋转

复制代码
data_transform = transforms.Compose
([
    transforms.RandomHorizontalFlip(p=1),
    transforms.RandomVerticalFlip(p=1),
    transforms.ToTensor(),
])

对训练数据集中图像进行旋转并打印对比

复制代码
img = train_data[5][0]
img_tr=data_transform(img)
img_tr_np=img_tr.numpy()

plt.subplot(1,2,1)
plt.imshow(img,cmap="gray")
plt.title("original")
plt.subplot(1,2,2)
plt.imshow(img_tr_np[0],cmap="gray");
plt.title("transformed 180")
相关推荐
Q_Q5110082852 分钟前
python+django/flask的篮球馆/足球场地/运动场地预约系统
spring boot·python·django·flask·node.js·php
悟乙己11 分钟前
LangExtract + 知识图谱 — Google 用于 NLP 任务的新库
人工智能·自然语言处理·知识图谱
lpfasd12312 分钟前
GEO崛起与AI信任危机:数据源安全如何守护智能时代的基石?
大数据·人工智能·安全
Allen正心正念202514 分钟前
提升大语言模型性能的关键技术清单(from 网络)
人工智能·语言模型·自然语言处理
云雾J视界17 分钟前
AI驱动半导体良率提升:基于机器学习的晶圆缺陷分类系统搭建
人工智能·python·机器学习·智能制造·数据驱动·晶圆缺陷分类
拂过世俗的风20 分钟前
Hopfield神经网络简介
人工智能·深度学习·神经网络
IT_陈寒24 分钟前
Vue 3响应式原理深度拆解:5个90%开发者不知道的Ref与Reactive底层实现差异
前端·人工智能·后端
朝凡FR31 分钟前
AIShareTxt入门:快速准确高效的为金融决策智能体提供股票技术指标上下文
python·ai编程
swanwei33 分钟前
AI与电力的深度绑定:算力与能源分配的趋势分析
大数据·人工智能
長安一片月33 分钟前
深度学习的前世今生
人工智能·深度学习