深度学习中的FLOPs补充

学习了博主的介绍(深度学习中的FLOPs介绍及计算(注意区分FLOPS)-CSDN博客)后,对我不理解的内容做了一点补充。 链接放到下边啦

https://blog.csdn.net/qq_41834400/article/details/120283103

FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。

1 全连接网络中FLOPs的计算 博主说的很详细了就不介绍了

2 解释一下CNN中FLOPs的计算中 我不理解的地方

生成输出特征图的一个通道的 一个像素点的计算过程

对于每个输入通道,我们有次乘法 和 次加法。因此,单个输入通道的计算次数为:次乘法+次加法

注意是卷积核和输入特征图对应元素相乘后 得到的个数,把他们 对应相加的过程!!!!!!

总共的计算次数为:

所有输入通道的计算次数

对于所有 个输入通道,还需要将所有通道的结果相加形成输出的一个通道的特征图。因此,每个输出像素点需要额外的 次加法。因此,总的计算次数为:

也就是博主提到的下边这个过程

若考虑到偏置,可以看看卷积操作中,偏置是怎么起作用的,参考这个博主的

https://blog.csdn.net/qq_42103167/article/details/105056598?spm=1001.2014.3001.5506

(每个卷积核是和输入特征图的通道是一样的!!!)偏置是在输出特征图的每个像素点的卷积操作完成后(比如三通道,三次卷积操作后),加上的。所以一次卷积操作偏置加1。

整个输出特征图的计算次数

所有输出通道的计算次数

由于有 个输出通道,因此总的计算次数为:

卷积层FLOPs的计算公式如下(不考虑bias时有-1,有bias时没有-1):

感觉博主推荐的链接也不错 ,有空看看

(60 封私信 / 82 条消息) CNN 模型所需的计算力(flops)和参数(parameters)数量是怎么计算的? - 知乎 (zhihu.com)

分享一个FLOPs计算神器 - 简书 (jianshu.com)

我们可以发现,具有相似的FLOPs的网络,执行的速度却不一样 。有的相差还挺大。

使用FLOP作为计算复杂度的唯一指标是不充分的。

为什么不能只用FLOPs作为指标呢?

作者认为有如下几个原因:

  1. FLOPs没有考虑几个对速度有相当大影响的重要因素。 2)计算平台的不同。

  2. FLOPs没有考虑几个对速度有相当大影响的重要因素

    MAC和并行度

链接:https://www.jianshu.com/p/b1ceaa7effa8

CNN解说员 (poloclub.github.io)

相关推荐
哔哩哔哩技术12 分钟前
B站基础安全在AI溯源方向的探索实践
人工智能
IT_陈寒18 分钟前
7个鲜为人知的JavaScript性能优化技巧,让你的网页加载速度提升50%
前端·人工智能·后端
城数派24 分钟前
1951-2100年全球复合极端气候事件数据集
人工智能·数据分析
菜鸟‍28 分钟前
【论文学习】基于 Transformer 的图像分割模型
深度学习·学习·transformer
Hody9143 分钟前
【XR硬件系列】夸克 AI 眼镜预售背后:阿里用 “硬件尖刀 + 生态护城河“ 重构智能穿戴逻辑
人工智能·重构
Icoolkj1 小时前
RAGFlow与Dify知识库:对比选型与技术落地解析
人工智能
终端域名1 小时前
转折·融合·重构——2025十大新兴技术驱动系统变革与全球挑战应对
人工智能·重构
FreeCode1 小时前
LangChain1.0智能体开发:中间件(Middleware)
人工智能·langchain·agent
黑黑的脸蛋1 小时前
Cursor 自动化批量修改大量代码场景
人工智能·程序员
智启七月1 小时前
从 token 到向量:微信 CALM 模型颠覆大语言模型范式
人工智能·深度学习