深度学习中的FLOPs补充

学习了博主的介绍(深度学习中的FLOPs介绍及计算(注意区分FLOPS)-CSDN博客)后,对我不理解的内容做了一点补充。 链接放到下边啦

https://blog.csdn.net/qq_41834400/article/details/120283103

FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。

1 全连接网络中FLOPs的计算 博主说的很详细了就不介绍了

2 解释一下CNN中FLOPs的计算中 我不理解的地方

生成输出特征图的一个通道的 一个像素点的计算过程

对于每个输入通道,我们有次乘法 和 次加法。因此,单个输入通道的计算次数为:次乘法+次加法

注意是卷积核和输入特征图对应元素相乘后 得到的个数,把他们 对应相加的过程!!!!!!

总共的计算次数为:

所有输入通道的计算次数

对于所有 个输入通道,还需要将所有通道的结果相加形成输出的一个通道的特征图。因此,每个输出像素点需要额外的 次加法。因此,总的计算次数为:

也就是博主提到的下边这个过程

若考虑到偏置,可以看看卷积操作中,偏置是怎么起作用的,参考这个博主的

https://blog.csdn.net/qq_42103167/article/details/105056598?spm=1001.2014.3001.5506

(每个卷积核是和输入特征图的通道是一样的!!!)偏置是在输出特征图的每个像素点的卷积操作完成后(比如三通道,三次卷积操作后),加上的。所以一次卷积操作偏置加1。

整个输出特征图的计算次数

所有输出通道的计算次数

由于有 个输出通道,因此总的计算次数为:

卷积层FLOPs的计算公式如下(不考虑bias时有-1,有bias时没有-1):

感觉博主推荐的链接也不错 ,有空看看

(60 封私信 / 82 条消息) CNN 模型所需的计算力(flops)和参数(parameters)数量是怎么计算的? - 知乎 (zhihu.com)

分享一个FLOPs计算神器 - 简书 (jianshu.com)

我们可以发现,具有相似的FLOPs的网络,执行的速度却不一样 。有的相差还挺大。

使用FLOP作为计算复杂度的唯一指标是不充分的。

为什么不能只用FLOPs作为指标呢?

作者认为有如下几个原因:

  1. FLOPs没有考虑几个对速度有相当大影响的重要因素。 2)计算平台的不同。

  2. FLOPs没有考虑几个对速度有相当大影响的重要因素

    MAC和并行度

链接:https://www.jianshu.com/p/b1ceaa7effa8

CNN解说员 (poloclub.github.io)

相关推荐
CoovallyAIHub18 分钟前
顶刊新发!上海交大提出PreCM:即插即用的旋转等变卷积,显著提升分割模型鲁棒性
人工智能·算法·计算机视觉
Francek Chen29 分钟前
【深度学习计算机视觉】12:风格迁移
人工智能·pytorch·深度学习·计算机视觉·风格迁移
拓端研究室29 分钟前
专题:2025年AI Agent智能体行业价值及应用分析报告:核心趋势、经济影响与治理框架|附700+份报告PDF、数据仪表盘汇总下载
人工智能
2501_9307992432 分钟前
访答个人知识库,浏览器。Al编辑器,云知识库,RAG,企业知识库,本地知识库,访答编辑器,云知识库,私有知识库,Pdf转Word,……
人工智能
猫头虎35 分钟前
OpenAI发布构建AI智能体的实践指南:实用框架、设计模式与最佳实践解析
人工智能·设计模式·开源·aigc·交互·pip·ai-native
jie*35 分钟前
小杰深度学习(seventeen)——视觉-经典神经网络——MObileNetV3
人工智能·python·深度学习·神经网络·numpy·matplotlib
好奇龙猫36 分钟前
【学习AI-相关路程-mnist手写数字分类-一段学习的结束:自我学习AI-复盘-代码-了解原理-综述(5) 】
人工智能·学习·分类
A-大程序员38 分钟前
【Pytorch】分类问题交叉熵
人工智能·pytorch·分类
一车小面包41 分钟前
基于bert-base-chinese的外卖评论情绪分类项目
人工智能·机器学习
wu_jing_sheng041 分钟前
ai 作物分类
人工智能·分类·数据挖掘