深度学习中的FLOPs补充

学习了博主的介绍(深度学习中的FLOPs介绍及计算(注意区分FLOPS)-CSDN博客)后,对我不理解的内容做了一点补充。 链接放到下边啦

https://blog.csdn.net/qq_41834400/article/details/120283103

FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。

1 全连接网络中FLOPs的计算 博主说的很详细了就不介绍了

2 解释一下CNN中FLOPs的计算中 我不理解的地方

生成输出特征图的一个通道的 一个像素点的计算过程

对于每个输入通道,我们有次乘法 和 次加法。因此,单个输入通道的计算次数为:次乘法+次加法

注意是卷积核和输入特征图对应元素相乘后 得到的个数,把他们 对应相加的过程!!!!!!

总共的计算次数为:

所有输入通道的计算次数

对于所有 个输入通道,还需要将所有通道的结果相加形成输出的一个通道的特征图。因此,每个输出像素点需要额外的 次加法。因此,总的计算次数为:

也就是博主提到的下边这个过程

若考虑到偏置,可以看看卷积操作中,偏置是怎么起作用的,参考这个博主的

https://blog.csdn.net/qq_42103167/article/details/105056598?spm=1001.2014.3001.5506

(每个卷积核是和输入特征图的通道是一样的!!!)偏置是在输出特征图的每个像素点的卷积操作完成后(比如三通道,三次卷积操作后),加上的。所以一次卷积操作偏置加1。

整个输出特征图的计算次数

所有输出通道的计算次数

由于有 个输出通道,因此总的计算次数为:

卷积层FLOPs的计算公式如下(不考虑bias时有-1,有bias时没有-1):

感觉博主推荐的链接也不错 ,有空看看

(60 封私信 / 82 条消息) CNN 模型所需的计算力(flops)和参数(parameters)数量是怎么计算的? - 知乎 (zhihu.com)

分享一个FLOPs计算神器 - 简书 (jianshu.com)

我们可以发现,具有相似的FLOPs的网络,执行的速度却不一样 。有的相差还挺大。

使用FLOP作为计算复杂度的唯一指标是不充分的。

为什么不能只用FLOPs作为指标呢?

作者认为有如下几个原因:

  1. FLOPs没有考虑几个对速度有相当大影响的重要因素。 2)计算平台的不同。

  2. FLOPs没有考虑几个对速度有相当大影响的重要因素

    MAC和并行度

链接:https://www.jianshu.com/p/b1ceaa7effa8

CNN解说员 (poloclub.github.io)

相关推荐
良策金宝AI19 小时前
让端子排接线图“智能生成”,良策金宝AI推出变电站二次智能设计引擎
大数据·人工智能·工程设计·变电站ai
天云数据19 小时前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
xixixi7777719 小时前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔20 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
X54先生(人文科技)20 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家20 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata20 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
deephub21 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索
newBorn_199121 小时前
ops-transformer RoPE位置编码 复数旋转硬件加速实战
人工智能·深度学习·transformer·cann