Tensorflow之损失函数与交叉熵

损失函数:预测值与已知答案之间的差距

NN优化目标:loss最小{mse, 自定义, ce)

均方误差tensorflow实现,loss_mse = tf.reduce_mean(tf.sqrue(y_-y)

预测酸奶日销量,y,x1, x2是影响日销量的因素

建模前,应预先采集每日x1,x2,和效率y

拟造数据集x,y:y_=x1 + x2 ,噪声 -0.05-+0.05

import tensorflow as tf
import numpy as np

SEED = 2345

rdm = np.random.RandomState()
x = rdm.rand(32,2) # 生成32行两列之间的数字
y_ = [[x1 + x2 + (rdm.rand()/10.0 - 0.05)] for (x1, x2) in x] #0.1-0.05=0.005
x = tf.cast(x, dtype=tf.float32)
# 随机初始化w1(2,1)
w1 = tf.Variable(tf.random.normal([2, 1], stddev = 1, seed = 1))
epoch = 15000
lr = 0.002

for epoch in range(epoch):
    with tf.GradientTape() as tape:
        y = tf.matmul(x, w1)
        loss_mse = tf.reduce_mean(tf.square(y_ - y))
    grads = tape.gradient(loss_mse, w1)
    w1.assign_sub(lr * grads) #更新参数

使用均方误差,预测多和预测少是一样的

预测多了,损失成本,预测少了,损失利润,利润不等于成本

自定义损失函数 loss(y_, y) =

import tensorflow as tf
import numpy as np

SEED = 23455
COST = 1
PROFIT = 99

rdm = np.random.RandomState(SEED)
x = rdm.rand(32, 2)
y_ = [[x1 + x2 + (rdm.rand() / 10.0 - 0.05)] for (x1, x2) in x]  # 生成噪声[0,1)/10=[0,0.1); [0,0.1)-0.05=[-0.05,0.05)
x = tf.cast(x, dtype=tf.float32)

w1 = tf.Variable(tf.random.normal([2, 1], stddev=1, seed=1))

epoch = 10000
lr = 0.002

for epoch in range(epoch):
    with tf.GradientTape() as tape:
        y = tf.matmul(x, w1)
        loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * COST, (y_ - y) * PROFIT))

    grads = tape.gradient(loss, w1)
    w1.assign_sub(lr * grads)

    if epoch % 500 == 0:
        print("After %d training steps,w1 is " % (epoch))
        print(w1.numpy(), "\n")
print("Final w1 is: ", w1.numpy())

# 自定义损失函数
# 酸奶成本1元, 酸奶利润99元
# 成本很低,利润很高,人们希望多预测些,生成模型系数大于1,往多了预测

交叉熵

交叉熵可以表示两个概率分布之间的距离

例如 二分类,已知答案y_(1, 0) 预测 y1(0.6, 0.4), y2=(0.8, 0.2), 那个答案接近标准答案

代码实现, tf.losses.categorical_crossentropy(y_,y)

import tensorflow as tf

loss_ce1 = tf.losses.categorical_crossentropy([1, 0], [0.6, 0.4])
loss_ce2 = tf.losses.categorical_crossentropy([1, 0], [0.8, 0.2])
print("loss_ce1:", loss_ce1)
print("loss_ce2:", loss_ce2)

sotfmax与交叉熵结合

tf.nn.sotfmax_cross_entropy_with_logits(y_, y)

例子:

# softmax与交叉熵损失函数的结合
import tensorflow as tf
import numpy as np

y_ = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0]])
y = np.array([[12, 3, 2], [3, 10, 1], [1, 2, 5], [4, 6.5, 1.2], [3, 6, 1]])
y_pro = tf.nn.softmax(y)
loss_ce1 = tf.losses.categorical_crossentropy(y_,y_pro)
loss_ce2 = tf.nn.softmax_cross_entropy_with_logits(y_, y)

print('分步计算的结果:\n', loss_ce1)
print('结合计算的结果:\n', loss_ce2)


# 输出的结果相同
相关推荐
带娃的IT创业者8 分钟前
机器学习实战(8):降维技术——主成分分析(PCA)
人工智能·机器学习·分类·聚类
鸡鸭扣30 分钟前
Docker:3、在VSCode上安装并运行python程序或JavaScript程序
运维·vscode·python·docker·容器·js
调皮的芋头31 分钟前
iOS各个证书生成细节
人工智能·ios·app·aigc
paterWang1 小时前
基于 Python 和 OpenCV 的酒店客房入侵检测系统设计与实现
开发语言·python·opencv
东方佑1 小时前
使用Python和OpenCV实现图像像素压缩与解压
开发语言·python·opencv
神秘_博士2 小时前
自制AirTag,支持安卓/鸿蒙/PC/Home Assistant,无需拥有iPhone
arm开发·python·物联网·flutter·docker·gitee
flying robot3 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
188_djh3 小时前
# 10分钟了解DeepSeek,保姆级部署DeepSeek到WPS,实现AI赋能
人工智能·大语言模型·wps·ai技术·ai应用·deepseek·ai知识
Jackilina_Stone3 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏