算法训练(leetcode)第二十八天 | 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

刷题记录

  • [509. 斐波那契数](#509. 斐波那契数)
  • [70. 爬楼梯](#70. 爬楼梯)
  • [746. 使用最小花费爬楼梯](#746. 使用最小花费爬楼梯)

509. 斐波那契数

leetcode题目地址

递归

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    int fib(int n) {
        if(n<2) return n;
        return fib(n-1) + fib(n-2); 
    }
};

循环

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

cpp 复制代码
//c++
class Solution {
public:
    int fib(int n) {
        if(n<2) return n;
        int a=0, b=1;
        for(int i=2; i<=n; i++){
            swap(a, b);
            b += a;
        }
        return b;
    }
};

动态规划

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    int fib(int n) {
        if(n<2) return n;
        vector<int> dp(n+1, 0);
        dp[1]=1;
        for(int i=2; i<=n; i++){
            dp[i] = dp[i-1] + dp[i-2]; 
        }
        return dp[n];
    }
};

70. 爬楼梯

leetcode题目地址

本质上还是斐波那契数列。用递归会在45处时间超限。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

cpp 复制代码
// c++
class Solution {
public:
    int climbStairs(int n) {
        if(n<=2) return n;
        int a=1, b=2;
        for(int i=3; i<=n; i++){
            swap(a,b);
            b+=a;
        }
        return b;
        
    }
};

746. 使用最小花费爬楼梯

leetcode题目地址

动态规划。使用dp记录到达第i个楼梯所需要花费的费用。起始位置不需要支付费用,而起始位置可以是0和1,因此0、1位置的dp值为0.从2开始计算当前位置所需的最小花费。到达第i层的费用等于到达前一步的最小花费+前一步的花费。具体来说,若前一步是爬1个台阶到达第i层,则第i层的花费为cost[i-1]+dp[i-1];若前一步是爬2个台阶到达第i层,则第i层的花费为cost[i-2]+dp[i-2]。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    
    int minCostClimbingStairs(vector<int>& cost) {
        
        vector<int> dp(cost.size()+1, 0);
        for(int i=2; i<=cost.size(); i++){
            dp[i] = min(cost[i-1]+dp[i-1], cost[i-2]+dp[i-2]);
        }
        return dp[cost.size()];
    }
};

优化空间:上面的代码中起始每次都是只操作前面两个空间,因此只使用两个变量来计算既可。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

cpp 复制代码
//c++
class Solution {
public:
    
    int minCostClimbingStairs(vector<int>& cost) {
        
        int a=0, b=0;
        for(int i=2; i<=cost.size(); i++){
            int mincost = min(cost[i-1]+b, cost[i-2]+a);
            a = b;
            b = mincost;
        }
        return b;
    }
};
相关推荐
姜不吃葱5 分钟前
【力扣热题100】双指针—— 接雨水
数据结构·算法·leetcode·力扣热题100
PineappleCoder10 分钟前
大小写 + 标点全搞定!JS 如何精准统计单词频率?
前端·javascript·算法
雨落倾城夏未凉14 分钟前
5.通过拷贝构造函数复制一个对象,假如对象的成员中有个指针类型的变量,如何避免拷贝出来的副本中的该成员之下行同一块内存(等价于默认拷贝构造函数有没有缺点)
c++·后端
雨落倾城夏未凉16 分钟前
4.深拷贝VS浅拷贝
c++·后端
zzx_blog19 分钟前
简单易懂的leetcode 100题-第三篇 移动0,颜色分类,数组中的第K个最大元素
leetcode·面试
tanyongxi661 小时前
C++ 特殊类设计与单例模式解析
java·开发语言·数据结构·c++·算法·单例模式
qq_513970441 小时前
力扣 hot100 Day76
算法·leetcode·职场和发展
fqbqrr1 小时前
2508C++,支持rdma通信的高性能rpc库
c++·rpc
Moshow郑锴1 小时前
机器学习相关算法:回溯算法 贪心算法 回归算法(线性回归) 算法超参数 多项式时间 朴素贝叶斯分类算法
算法·机器学习·回归
liulilittle2 小时前
BFS寻路算法解析与实现
开发语言·c++·算法·宽度优先·寻路算法·寻路