[AI 大模型] 百度 文心一言

文章目录


[AI 大模型] 百度 文心一言

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0DwAIh0T-1720667576892)(https://i-blog.csdnimg.cn/direct/283919e5d78b4951ba1ade5dcfcb9cea.png#pic_center)

简介

**百度文心一言(ERNIE Bot)**是百度推出的全新一代知识增强大语言模型,旨在通过与人对话互动、回答问题和协助创作,帮助用户高效便捷地获取信息、知识和灵感。

文心一言融合了数万亿数据和数千亿知识,具备强大的知识增强、检索增强和对话增强能力。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-v3fx7hgi-1720667576896)(https://i-blog.csdnimg.cn/direct/f2ba2c15d0c946a4be823e1200c90025.jpeg#pic_center)

模型架构

文心一言基于百度的飞桨深度学习平台和文心知识增强大模型,采用了增强的 Transformer 架构。

其核心技术包括:

  • 知识增强:通过融合大规模知识图谱,提升模型的知识理解和推理能力。
  • 检索增强:结合实时检索技术,确保生成内容的准确性和时效性。
  • 对话增强:优化对话生成和理解能力,使模型能够更自然地与用户互动。

此外,文心一言还采用了有监督精调、人类反馈强化学习(RLHF)和提示技术,进一步提升了模型的性能和安全性。

发展

文心一言 的发展历程可以追溯到 2019 年 3 月,百度发布了首个知识增强大模型 ERNIE 1.0。此后,百度不断迭代升级,推出了 ERNIE 2.0、ERNIE 3.0 和 ERNIE 3.5 等版本。

2023 年 3 月,百度正式发布了文心一言,并在 2023 年 8 月全面向公众开放。

截至 2024 年 4 月,文心一言的用户数已超过 2 亿,API 日均调用量突破 2 亿。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-p9IBTePN-1720667576897)(https://i-blog.csdnimg.cn/direct/72ec32ba834b480bb3bebcc3c2d0136e.jpeg#pic_center)

新技术和优势

  1. 多模态能力:文心一言能够处理文本、图像、音频等多种数据类型,提供高质量的多模态输出。
  2. 高效架构:采用增强的 Transformer 和知识图谱技术,使得文心一言在训练和推理过程中更加高效。
  3. 长上下文理解:文心一言支持长达 30,000 个 token 的上下文窗口,显著提升了模型在长文本处理中的表现。
  4. 灵活性:文心一言提供了多种尺寸和配置,能够在从数据中心到边缘设备的各种环境中高效运行。
  5. 广泛应用:文心一言已经被多个行业的企业采用,用于构建自定义生成式 AI 模型,提升了企业的创新能力和竞争优势。

API 代码示例

以下是如何使用文心一言 API 进行开发的示例:

示例 1:文本生成

python 复制代码
import requests
import json

# 获取 access_token
def get_access_token(api_key, secret_key):
    url = "https://aip.baidubce.com/oauth/2.0/token"
    params = {
        "grant_type": "client_credentials",
        "client_id": api_key,
        "client_secret": secret_key
    }
    response = requests.post(url, params=params)
    return response.json().get("access_token")

# 文本生成请求
def generate_text(prompt, max_tokens, api_key, secret_key):
    access_token = get_access_token(api_key, secret_key)
    url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions?access_token={access_token}"
    payload = json.dumps({
        "messages": [{"role": "user", "content": prompt}],
        "max_tokens": max_tokens
    })
    headers = {'Content-Type': 'application/json'}
    response = requests.post(url, headers=headers, data=payload)
    return response.json()

# 示例调用
api_key = "YOUR_API_KEY"
secret_key = "YOUR_SECRET_KEY"
prompt = "写一篇关于人工智能未来发展的文章。"
response = generate_text(prompt, 150, api_key, secret_key)
print(response['result'])

示例 2:对话生成

python 复制代码
import requests
import json

# 获取 access_token
def get_access_token(api_key, secret_key):
    url = "https://aip.baidubce.com/oauth/2.0/token"
    params = {
        "grant_type": "client_credentials",
        "client_id": api_key,
        "client_secret": secret_key
    }
    response = requests.post(url, params=params)
    return response.json().get("access_token")

# 对话生成请求
def generate_conversation(messages, api_key, secret_key):
    access_token = get_access_token(api_key, secret_key)
    url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions?access_token={access_token}"
    payload = json.dumps({"messages": messages})
    headers = {'Content-Type': 'application/json'}
    response = requests.post(url, headers=headers, data=payload)
    return response.json()

# 示例调用
api_key = "YOUR_API_KEY"
secret_key = "YOUR_SECRET_KEY"
messages = [
    {"role": "system", "content": "你是一个乐于助人的助手。"},
    {"role": "user", "content": "你好!"}
]
response = generate_conversation(messages, api_key, secret_key)
print(response['result'])

示例 3:情感分析

python 复制代码
import requests
import json

# 获取 access_token
def get_access_token(api_key, secret_key):
    url = "https://aip.baidubce.com/oauth/2.0/token"
    params = {
        "grant_type": "client_credentials",
        "client_id": api_key,
        "client_secret": secret_key
    }
    response = requests.post(url, params=params)
    return response.json().get("access_token")

# 情感分析请求
def analyze_sentiment(text, api_key, secret_key):
    access_token = get_access_token(api_key, secret_key)
    url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions?access_token={access_token}"
    payload = json.dumps({"messages": [{"role": "user", "content": text}]})
    headers = {'Content-Type': 'application/json'}
    response = requests.post(url, headers=headers, data=payload)
    return response.json()

# 示例调用
api_key = "YOUR_API_KEY"
secret_key = "YOUR_SECRET_KEY"
text = "我今天感觉非常开心!"
response = analyze_sentiment(text, api_key, secret_key)
print(response['result'])

百度文心一言的推出标志着 AI 技术的又一次飞跃,为开发者和企业提供了强大的工具,推动了 AI 应用的广泛普及和创新。

相关推荐
杭州泽沃电子科技有限公司1 天前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
GIS数据转换器1 天前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
OJAC1111 天前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
机器之心1 天前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai
coder_pig1 天前
Antigravity 登录问题/数据泄露风险 (附:白嫖一个月 Gemini Enterprise 攻略)
aigc·visual studio code·gemini
可观测性用观测云1 天前
观测云 MCP Server 接入和使用最佳实践
人工智能
掘金一周1 天前
大部分人都错了!这才是chrome插件多脚本通信的正确姿势 | 掘金一周 11.27
前端·人工智能·后端
豆奶特浓61 天前
Java面试模拟:当搞笑程序员谢飞机遇到电商秒杀与AIGC客服场景
java·spring boot·微服务·面试·aigc·高并发·电商
xier_ran1 天前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
ModestCoder_1 天前
ROS Bag与导航数据集技术指南
开发语言·人工智能·自然语言处理·机器人·具身智能