推荐算法——MRR

定义

MRR计算的是第一个正确答案的排名的倒数,并对所有查询取平均值。它衡量了模型在排序结果中快速找到正确答案的能力。

其中:

  • Q 是查询的总数。
  • ranki 是第 i 个查询中第一个正确答案的排名(位置)。如果第一个正确答案不在结果列表中,则通常将 ranki 视为一个非常大的数(在实际计算中可能会设为无穷大,但通常会用0或某个很小的数来近似表示,或者简单地忽略该查询的贡献)。然而,更常见的做法是在计算MRR之前先过滤掉那些没有正确答案的查询。

计算步骤

  1. 确定查询集:首先,你需要有一个查询集,其中包含 Q 个查询。

  2. 获取排序结果:对于每个查询,使用你的模型生成一个排序结果列表。

  3. 找到第一个正确答案的排名:在排序结果列表中,找到第一个正确答案的排名(位置)。如果列表中没有正确答案,则根据具体情况处理(如忽略该查询或将其排名视为无穷大)。

  4. 计算每个查询的倒数排名:对每个查询,计算其第一个正确答案排名的倒数(即 ranki​1​)。

  5. 计算MRR:将所有查询的倒数排名相加,然后除以查询的总数 Q。

注意事项

  • 排名从1开始:在大多数情况下,排名是从1开始的,即第一个结果的位置是1,第二个结果的位置是2,依此类推。

  • 处理没有正确答案的查询:如果某个查询在结果集中没有正确答案,你可以选择忽略该查询(即不在求和时包含它),或者将其倒数排名视为0(这实际上等同于忽略它)。

  • 截断:在某些情况下,你可能只对排序结果的前N个位置感兴趣。在这种情况下,你可以只考虑前N个位置中的第一个正确答案来计算MRR(这被称为MRR@N)。

示例

假设有3个查询,它们的第一个正确答案的排名分别是1、3和5,则:

相关推荐
IT猿手2 小时前
基于强化学习 Q-learning 算法求解城市场景下无人机三维路径规划研究,提供完整MATLAB代码
神经网络·算法·matlab·人机交互·无人机·强化学习·无人机三维路径规划
蜡笔小新..5 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
万能程序员-传康Kk6 小时前
旅游推荐数据分析可视化系统算法
算法·数据分析·旅游
PXM的算法星球6 小时前
【并发编程基石】CAS无锁算法详解:原理、实现与应用场景
算法
ll7788116 小时前
C++学习之路,从0到精通的征途:继承
开发语言·数据结构·c++·学习·算法
烨然若神人~6 小时前
算法第十七天|654. 最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树
算法
爱coding的橙子6 小时前
每日算法刷题Day2 5.10:leetcode数组1道题3种解法,用时40min
算法·leetcode
奋斗者1号6 小时前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习
程序媛小盐7 小时前
贪心算法:最小生成树
算法·贪心算法·图论
Panesle7 小时前
分布式异步强化学习框架训练32B大模型:INTELLECT-2
人工智能·分布式·深度学习·算法·大模型