推荐算法——MRR

定义

MRR计算的是第一个正确答案的排名的倒数,并对所有查询取平均值。它衡量了模型在排序结果中快速找到正确答案的能力。

其中:

  • Q 是查询的总数。
  • ranki 是第 i 个查询中第一个正确答案的排名(位置)。如果第一个正确答案不在结果列表中,则通常将 ranki 视为一个非常大的数(在实际计算中可能会设为无穷大,但通常会用0或某个很小的数来近似表示,或者简单地忽略该查询的贡献)。然而,更常见的做法是在计算MRR之前先过滤掉那些没有正确答案的查询。

计算步骤

  1. 确定查询集:首先,你需要有一个查询集,其中包含 Q 个查询。

  2. 获取排序结果:对于每个查询,使用你的模型生成一个排序结果列表。

  3. 找到第一个正确答案的排名:在排序结果列表中,找到第一个正确答案的排名(位置)。如果列表中没有正确答案,则根据具体情况处理(如忽略该查询或将其排名视为无穷大)。

  4. 计算每个查询的倒数排名:对每个查询,计算其第一个正确答案排名的倒数(即 ranki​1​)。

  5. 计算MRR:将所有查询的倒数排名相加,然后除以查询的总数 Q。

注意事项

  • 排名从1开始:在大多数情况下,排名是从1开始的,即第一个结果的位置是1,第二个结果的位置是2,依此类推。

  • 处理没有正确答案的查询:如果某个查询在结果集中没有正确答案,你可以选择忽略该查询(即不在求和时包含它),或者将其倒数排名视为0(这实际上等同于忽略它)。

  • 截断:在某些情况下,你可能只对排序结果的前N个位置感兴趣。在这种情况下,你可以只考虑前N个位置中的第一个正确答案来计算MRR(这被称为MRR@N)。

示例

假设有3个查询,它们的第一个正确答案的排名分别是1、3和5,则:

相关推荐
NAGNIP14 小时前
一文搞懂机器学习中的特征降维!
算法·面试
NAGNIP14 小时前
一文搞懂机器学习中的特征构造!
算法·面试
Learn Beyond Limits14 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
你怎么知道我是队长15 小时前
C语言---typedef
c语言·c++·算法
Qhumaing16 小时前
C++学习:【PTA】数据结构 7-1 实验7-1(最小生成树-Prim算法)
c++·学习·算法
Z1Jxxx18 小时前
01序列01序列
开发语言·c++·算法
过期的秋刀鱼!19 小时前
机器学习-逻辑回归的成本函数的补充-推导
人工智能·机器学习·逻辑回归
shangjian00719 小时前
AI大模型-核心概念-机器学习
人工智能·机器学习
汽车仪器仪表相关领域19 小时前
全自动化精准检测,赋能高效年检——NHD-6108全自动远、近光检测仪项目实战分享
大数据·人工智能·功能测试·算法·安全·自动化·压力测试