推荐算法——MRR

定义

MRR计算的是第一个正确答案的排名的倒数,并对所有查询取平均值。它衡量了模型在排序结果中快速找到正确答案的能力。

其中:

  • Q 是查询的总数。
  • ranki 是第 i 个查询中第一个正确答案的排名(位置)。如果第一个正确答案不在结果列表中,则通常将 ranki 视为一个非常大的数(在实际计算中可能会设为无穷大,但通常会用0或某个很小的数来近似表示,或者简单地忽略该查询的贡献)。然而,更常见的做法是在计算MRR之前先过滤掉那些没有正确答案的查询。

计算步骤

  1. 确定查询集:首先,你需要有一个查询集,其中包含 Q 个查询。

  2. 获取排序结果:对于每个查询,使用你的模型生成一个排序结果列表。

  3. 找到第一个正确答案的排名:在排序结果列表中,找到第一个正确答案的排名(位置)。如果列表中没有正确答案,则根据具体情况处理(如忽略该查询或将其排名视为无穷大)。

  4. 计算每个查询的倒数排名:对每个查询,计算其第一个正确答案排名的倒数(即 ranki​1​)。

  5. 计算MRR:将所有查询的倒数排名相加,然后除以查询的总数 Q。

注意事项

  • 排名从1开始:在大多数情况下,排名是从1开始的,即第一个结果的位置是1,第二个结果的位置是2,依此类推。

  • 处理没有正确答案的查询:如果某个查询在结果集中没有正确答案,你可以选择忽略该查询(即不在求和时包含它),或者将其倒数排名视为0(这实际上等同于忽略它)。

  • 截断:在某些情况下,你可能只对排序结果的前N个位置感兴趣。在这种情况下,你可以只考虑前N个位置中的第一个正确答案来计算MRR(这被称为MRR@N)。

示例

假设有3个查询,它们的第一个正确答案的排名分别是1、3和5,则:

相关推荐
B站_计算机毕业设计之家9 分钟前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
Wei&Yan20 分钟前
数据结构——顺序表(静/动态代码实现)
数据结构·c++·算法·visual studio code
喵叔哟41 分钟前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
团子的二进制世界1 小时前
G1垃圾收集器是如何工作的?
java·jvm·算法
白日做梦Q1 小时前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习
吃杠碰小鸡1 小时前
高中数学-数列-导数证明
前端·数学·算法
故事不长丨1 小时前
C#线程同步:lock、Monitor、Mutex原理+用法+实战全解析
开发语言·算法·c#
long3161 小时前
Aho-Corasick 模式搜索算法
java·数据结构·spring boot·后端·算法·排序算法
近津薪荼1 小时前
dfs专题4——二叉树的深搜(验证二叉搜索树)
c++·学习·算法·深度优先
熊文豪1 小时前
探索CANN ops-nn:高性能哈希算子技术解读
算法·哈希算法·cann