《昇思25天学习打卡营第4天|07函数式自动微分》

说在前面

前面几节课学习了mindspore的一些操作方法,接下来学习下稍微有一些技术含量的内容。

正向计算图

图中内容对应的代码如下,为了便于查看分析,增加了对数据的shape打印:

python 复制代码
x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

print(f"x shape {x.shape}")
print(f"y shape {y.shape}")
print(f"w shape {w.shape}")
print(f"b shape {b.shape}")

可以查看到输出的结果是

shell 复制代码
x shape (5,)
y shape (3,)
w shape (5, 3)
b shape (3,)

简单理解是:

xshape为[5],和w[5, 3]相乘,获得的结果理论上是[3]的大小。之后和b相加,结果仍然是[3],也就是图片中的z,其实应该有一个激活函数的,对应图片中的CE,也就是交叉熵损失函数。

对应的代码是

python 复制代码
def function(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss

模型网络正向逻辑介绍完毕。

反向计算逻辑

上面的公式中,w和b是模型训练过程中需要学习的参数,因此反向主要是更新w和b。

在mindspone中的方法是:

python 复制代码
grad_fn = mindspore.grad(function, (2, 3))

获得计算结果:

到这里,也就介绍完毕算子的正向和反向的使用方法。

接下来会通过神经网络的例子,介绍自动微分的功能。

最后将x,y 导入,然后进行执行:

打卡

完成mindspone的自动微分学习,感觉使用起来没那么顺畅了。

相关推荐
CV学术叫叫兽20 分钟前
一站式学习:害虫识别与分类图像分割
学习·分类·数据挖掘
我们的五年31 分钟前
【Linux课程学习】:进程程序替换,execl,execv,execlp,execvp,execve,execle,execvpe函数
linux·c++·学习
一棵开花的树,枝芽无限靠近你1 小时前
【PPTist】添加PPT模版
前端·学习·编辑器·html
VertexGeek1 小时前
Rust学习(八):异常处理和宏编程:
学习·算法·rust
二进制_博客2 小时前
Flink学习连载文章4-flink中的各种转换操作
大数据·学习·flink
codebolt2 小时前
ADS学习记录
学习
Komorebi.py3 小时前
【Linux】-学习笔记05
linux·笔记·学习
朝九晚五ฺ11 小时前
【Linux探索学习】第十四弹——进程优先级:深入理解操作系统中的进程优先级
linux·运维·学习
猫爪笔记12 小时前
前端:HTML (学习笔记)【1】
前端·笔记·学习·html
pq113_613 小时前
ftdi_sio应用学习笔记 3 - GPIO
笔记·学习·ftdi_sio