《昇思25天学习打卡营第4天|07函数式自动微分》

说在前面

前面几节课学习了mindspore的一些操作方法,接下来学习下稍微有一些技术含量的内容。

正向计算图

图中内容对应的代码如下,为了便于查看分析,增加了对数据的shape打印:

python 复制代码
x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

print(f"x shape {x.shape}")
print(f"y shape {y.shape}")
print(f"w shape {w.shape}")
print(f"b shape {b.shape}")

可以查看到输出的结果是

shell 复制代码
x shape (5,)
y shape (3,)
w shape (5, 3)
b shape (3,)

简单理解是:

xshape为[5],和w[5, 3]相乘,获得的结果理论上是[3]的大小。之后和b相加,结果仍然是[3],也就是图片中的z,其实应该有一个激活函数的,对应图片中的CE,也就是交叉熵损失函数。

对应的代码是

python 复制代码
def function(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss

模型网络正向逻辑介绍完毕。

反向计算逻辑

上面的公式中,w和b是模型训练过程中需要学习的参数,因此反向主要是更新w和b。

在mindspone中的方法是:

python 复制代码
grad_fn = mindspore.grad(function, (2, 3))

获得计算结果:

到这里,也就介绍完毕算子的正向和反向的使用方法。

接下来会通过神经网络的例子,介绍自动微分的功能。

最后将x,y 导入,然后进行执行:

打卡

完成mindspone的自动微分学习,感觉使用起来没那么顺畅了。

相关推荐
wdfk_prog1 小时前
[Linux]学习笔记系列 -- [kernel][time]hrtimer
linux·笔记·学习
四谎真好看2 小时前
Java 黑马程序员学习笔记(进阶篇21)
java·开发语言·笔记·学习·学习笔记
立志成为大牛的小牛2 小时前
数据结构——三十三、Dijkstra算法(王道408)
数据结构·笔记·学习·考研·算法·图论
何故染尘優3 小时前
docker学习笔记,从入门开始!
笔记·学习·docker
D.....l4 小时前
STM32学习(MCU控制)(WiFi and MQTT)
stm32·单片机·学习
摆烂积极分子4 小时前
安卓开发学习10-中级控件
学习
少爷晚安。4 小时前
Java零基础学习完整笔记,基于Intellij IDEA开发工具,笔记持续更新中
java·笔记·学习
junziruruo4 小时前
半监督学习,少样本学习和零样本学习
python·学习·机器学习
学习和思考5 小时前
为什么我的vscode有的时候可以跳转,有的时候不能跳转
arm开发·ide·驱动开发·vscode·学习·1024程序员节
兔兔爱学习兔兔爱学习5 小时前
LangChain4j学习6:agent
人工智能·学习·语言模型