《昇思25天学习打卡营第4天|07函数式自动微分》

说在前面

前面几节课学习了mindspore的一些操作方法,接下来学习下稍微有一些技术含量的内容。

正向计算图

图中内容对应的代码如下,为了便于查看分析,增加了对数据的shape打印:

python 复制代码
x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

print(f"x shape {x.shape}")
print(f"y shape {y.shape}")
print(f"w shape {w.shape}")
print(f"b shape {b.shape}")

可以查看到输出的结果是

shell 复制代码
x shape (5,)
y shape (3,)
w shape (5, 3)
b shape (3,)

简单理解是:

xshape为[5],和w[5, 3]相乘,获得的结果理论上是[3]的大小。之后和b相加,结果仍然是[3],也就是图片中的z,其实应该有一个激活函数的,对应图片中的CE,也就是交叉熵损失函数。

对应的代码是

python 复制代码
def function(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss

模型网络正向逻辑介绍完毕。

反向计算逻辑

上面的公式中,w和b是模型训练过程中需要学习的参数,因此反向主要是更新w和b。

在mindspone中的方法是:

python 复制代码
grad_fn = mindspore.grad(function, (2, 3))

获得计算结果:

到这里,也就介绍完毕算子的正向和反向的使用方法。

接下来会通过神经网络的例子,介绍自动微分的功能。

最后将x,y 导入,然后进行执行:

打卡

完成mindspone的自动微分学习,感觉使用起来没那么顺畅了。

相关推荐
@ZzHhXx3 分钟前
嵌入式学习---(硬件)
学习
励志不掉头发的内向程序员20 分钟前
C++进阶——多态
开发语言·c++·学习
西猫雷婶1 小时前
scikit-learn/sklearn学习|广义线性回归损失函数的基本表达式
深度学习·神经网络·学习·机器学习·线性回归·scikit-learn·概率论
Lynnxiaowen2 小时前
今天继续学习shell脚本
linux·运维·学习·云计算·bash
落羽的落羽3 小时前
【C++】C++11的包装器:function与bind简介
c++·学习
sucool_lb3 小时前
GEM5学习(5): ARM 架构功耗仿真
arm开发·学习
尚久龙3 小时前
安卓学习 之 图片控件和图片按钮
android·java·学习·手机·android studio·安卓
守.护3 小时前
云计算学习笔记——HTTP服务、NFS服务篇
笔记·学习·云计算
wdfk_prog3 小时前
[Linux]学习笔记系列 -- lib/dump_stack.c 栈回溯打印(Stack Trace Dumping) 内核调试与错误诊断的基石
linux·运维·服务器·c语言·笔记·学习
i.ajls3 小时前
无监督学习,推荐系统以及强化学习笔记
笔记·学习·机器学习