《昇思25天学习打卡营第4天|07函数式自动微分》

说在前面

前面几节课学习了mindspore的一些操作方法,接下来学习下稍微有一些技术含量的内容。

正向计算图

图中内容对应的代码如下,为了便于查看分析,增加了对数据的shape打印:

python 复制代码
x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

print(f"x shape {x.shape}")
print(f"y shape {y.shape}")
print(f"w shape {w.shape}")
print(f"b shape {b.shape}")

可以查看到输出的结果是

shell 复制代码
x shape (5,)
y shape (3,)
w shape (5, 3)
b shape (3,)

简单理解是:

xshape为[5],和w[5, 3]相乘,获得的结果理论上是[3]的大小。之后和b相加,结果仍然是[3],也就是图片中的z,其实应该有一个激活函数的,对应图片中的CE,也就是交叉熵损失函数。

对应的代码是

python 复制代码
def function(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss

模型网络正向逻辑介绍完毕。

反向计算逻辑

上面的公式中,w和b是模型训练过程中需要学习的参数,因此反向主要是更新w和b。

在mindspone中的方法是:

python 复制代码
grad_fn = mindspore.grad(function, (2, 3))

获得计算结果:

到这里,也就介绍完毕算子的正向和反向的使用方法。

接下来会通过神经网络的例子,介绍自动微分的功能。

最后将x,y 导入,然后进行执行:

打卡

完成mindspone的自动微分学习,感觉使用起来没那么顺畅了。

相关推荐
半夏知半秋21 分钟前
rust学习-rust中的格式化打印
服务器·开发语言·后端·学习·rust
Mr.L705171 小时前
Maui学习笔记- SQLite简单使用案例02添加详情页
笔记·学习·ios·sqlite·c#
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
Trouvaille ~4 小时前
【Linux】命令为桥,存在为岸,穿越虚拟世界的哲学之道
linux·学习·开源·操作系统·编程·命令行·基础入门
百里香酚兰4 小时前
【AIGC学习笔记】扣子平台——精选有趣应用,探索无限可能
笔记·学习·aigc·大模型应用·扣子平台
种花生的图图4 小时前
《边界感知的分而治之方法:基于扩散模型的无监督阴影去除解决方案》学习笔记
人工智能·笔记·深度学习·学习·机器学习
东京老树根4 小时前
Excel 技巧20 - 在Excel中输入内容时自动添加边框(★★)
笔记·学习·excel
_Eden_5 小时前
Ansible入门学习之基础元素介绍
linux·学习·云原生
三次拒绝王俊凯6 小时前
java求职学习day15
java·学习·面试
奶香臭豆腐6 小时前
C++ —— 智能指针 unique_ptr (上)
开发语言·c++·学习