数学建模·非线性规划

整型规划

适用于一个变量或多个变量的值只能是整型的情况

整形规划的分类

0-1背包问题

对于一个物品来说,只有选和不选两种情况

表现为单下标,单变量问题

例:建设学校问题

  • 对于每个学校来说只有选和不选两种情况,在数学上我们用0-1变量来表示

  • 约束条件如下

    例如对于A1来说,至少从x1,x2,x3中选择至少建设一所,反映在数学上就是0-1变量和>=1

蒙特卡洛模拟代码

matlab 复制代码
%% 蒙特卡洛建校问题
clear;clc;
n=10000;
res_min=+inf;
rex_x=0;
for i=1:n
   x=randi([0,1],1,6);
   if x(1)+x(2)+x(3)>=1&x(4)+x(5)>=1&x(3)+x(5)>=1&x(2)+x(4)>=1&x(5)+x(6)>=1&x(1)>=1
       if sum(x)<res_min
           res_min=sum(x);
           res_x=x;
       end
   end
end
disp("最终结果为");
disp(res_x);
disp(res_min);

指派问题

例:工厂的设备分配问题

拥有两个对象,将i指派给j,所以是双下标问题

类似于0-1背包问题,我们用带两个下标0-1向量表示问题

代码如下

matlab 复制代码
%% 蒙特卡洛工厂分配问题
clear;clc;
n=10000;
c=[4,2,3,4;6 4 5 5; 7 6 7 6; 7 8 8 6;7 9 8 6;7 10 8 6];
res_x=0;
res=0;
for i=1:n
    flag=1;
    x=randi([1,4],1,6);
    for j=1:4
        if ismember(j,x)==0
            flag=0;
            break;
        end
    end
    sum=0;
    if flag==1
        for k=1:6
        sum=sum+c(k,x(k));
        end
        if sum>res
            res=sum;
            res_x=x;
        end
    end
end
disp("结果如下");
disp(res);
disp(res_x);
        

具体步骤

  • matlab具体函数求解
  • 蒙特卡洛模拟

本质上是使用随机数不断模拟逼近最优解的形式

具体问题具体分析

非线性规划

具体定义

对于目标函数或约束条件不是线性的情况求极值

具体步骤

步骤如下,基本上就是填参数

代码模板

唯一要注意的点是f和nonlfun函数中的格式:

  • f函数

参数可以理解为x作为行向量,直接用行向量表示目标函数最后返回就行!

matlab 复制代码
function[f]=f(x)
    %x一般指行向量,f是指函数
    f=x(1)^2+x(2)^2+x(3)^2+8;
end
  • nonlfun函数

这里有两个返回值ciq和ceq,第一个是不等式,第二个是等式
注意都要化为 =右侧为0的形式!

matlab 复制代码
function[ciq,ceq]=nonlfun(x)%c是非线性不等式,ceq是等式
%等式或者不等式右侧必须都是0
    ciq=[x(1)+x(2)^2+x(3)^3-20];
    ceq=[-x(1)-x(2)^2+2];
end
  • 总模板如下
matlab 复制代码
%% 非线性规划模板
clear;clc;
%matlab中的非线性规划只能解决最小值问题
%约束条件缺失用[]代替
%约束不等式Ax<=b


disp("现在开始进行非线性规划,请按照要求输入");
%disp("以下对应矩阵的维度均与原公式相同");
disp("请提前定义好非线性函数f和非线性约束nonlfun!")
x0=input("请以行向量形式输入初值\n");
A=input("请输入线性不等式的系数矩阵A\n");
b=input("请输入线性常向量b\n");
Aeq=input("请输入线性等式的系数矩阵Aeq\n");
beq=input("请输入线性等式的常向量beq\n");
lb=input("请以列向量形式输入对应的下界\n");
ub=input("请以列向量形式输入对应的上界\n");
[x,val]=fmincon(@f,x0,A,b,Aeq,beq,lb,ub,@nonlfun);
display(x);
display(val);
相关推荐
ZhiqianXia1 天前
MxNxK状态问题 如何降低状态空间
数学建模
秋刀鱼 ..1 天前
2026生物神经网络与智能优化国际研讨会(BNNIO 2026)
大数据·python·计算机网络·数学建模·制造
秋刀鱼 ..2 天前
第三届教育发展与社会科学国际学术会议 (EDSS 2026)
大数据·python·计算机网络·数学建模·制造
2301_764441332 天前
跨城市人类移动行为预测
人工智能·机器学习·数学建模
数模乐园2 天前
2026美国大学生数学建模竞赛(MCM/ICM)报名流程指南
数学建模
Jasmine_llq3 天前
《P1082 [NOIP 2012 提高组] 同余方程》
算法·数学建模·质因数分解(试除法)·快速幂(模幂运算)·欧拉函数计算·基于质因数分解
秋刀鱼 ..3 天前
第二届电力电子技术与电网系统国际学术会议(PETGS 2026)
大数据·python·计算机网络·数学建模·机器人·制造
谈笑也风生4 天前
三维建模工具 | Revit软件官方正式版详细下载步骤
数学建模
数模乐园4 天前
关于2026年美国大学生数学建模竞赛报名通知
数学建模
88号技师4 天前
2025年9月一区SCI-海狸行为优化算法Beaver behavior optimizer-附Matlab免费代码
开发语言·算法·数学建模·matlab·优化算法