分类损失函数 (一) torch.nn.CrossEntropyLoss()

1、交叉熵

  • 是一种用于衡量两个概率分布之间的距离或相似性的度量方法。
  • 机器学习中,交叉熵常用于损失函数,用于评估模型的预测结果和实际标签的差异。
  • 公式:

y:真是标签的概率分布,y':模型预测的概率分布

  • 交叉熵损失函数的目的:是最小化预测概率分布和真是概率分布之间的差异,使模型能够更好的学习到数据的内在规律和特征。

2、pytorch中的CrossEntropyLoss()

  • pytorch中的交叉熵包含两部分,softmax和交叉熵计算
  • softmax将预测值转化为概率值
  • torch.nn.CrossEntropyLoss(logits,target)

其中logits预测值是网络输出:[[0.8, 0.5, 0.2, 0.5],

0.2, 0.9, 0.3, 0.2\], \[0.4, 0.3, 0.7, 0.1\], \[0.1, 0.2, 0.4, 0.8\]

其中target标签可以是:列表:torch.tensor([[1, 0, 0, 0],

0, 1, 0, 0\], \[0, 1, 0, 0\], \[0, 0, 0, 1\]\], dtype=torch.float) 索引:torch.tensor(\[0,1, 1, 3\], dtype=torch.long)

相关推荐
说私域5 分钟前
“开源链动2+1模式AI智能名片S2B2C商城小程序”在拉群营销中的应用与效果
人工智能·小程序
PyAIGCMaster35 分钟前
钉钉的设计理念方面,我可以学习
人工智能·深度学习·学习·钉钉
sensen_kiss37 分钟前
INT305 Machine Learning 机器学习 Pt.5 神经网络(Neural network)
人工智能·神经网络·机器学习
极造数字1 小时前
从EMS看分布式能源发展:挑战与机遇并存
人工智能·分布式·物联网·信息可视化·能源·制造
深蓝电商API1 小时前
告别混乱文本:基于深度学习的 PDF 与复杂版式文档信息抽取
人工智能·深度学习·pdf
算家计算2 小时前
视觉-文本压缩框架——Glyph本地部署教程,以视觉压缩重塑长上下文处理范式
人工智能
qzhqbb2 小时前
神经网络—— 人工神经网络
人工智能·深度学习·神经网络
磊磊落落2 小时前
Cursor 初体验:将 React 项目从 JavaScript 升级到 TypeScript
人工智能
算家计算2 小时前
小鹏机器人真假难分引全网热议!而这只是开始......
人工智能·机器人·资讯
百锦再2 小时前
第1章 Rust语言概述
java·开发语言·人工智能·python·rust·go·1024程序员节