分类损失函数 (一) torch.nn.CrossEntropyLoss()

1、交叉熵

  • 是一种用于衡量两个概率分布之间的距离或相似性的度量方法。
  • 机器学习中,交叉熵常用于损失函数,用于评估模型的预测结果和实际标签的差异。
  • 公式:

y:真是标签的概率分布,y':模型预测的概率分布

  • 交叉熵损失函数的目的:是最小化预测概率分布和真是概率分布之间的差异,使模型能够更好的学习到数据的内在规律和特征。

2、pytorch中的CrossEntropyLoss()

  • pytorch中的交叉熵包含两部分,softmax和交叉熵计算
  • softmax将预测值转化为概率值
  • torch.nn.CrossEntropyLoss(logits,target)

其中logits预测值是网络输出:[[0.8, 0.5, 0.2, 0.5],

0.2, 0.9, 0.3, 0.2\], \[0.4, 0.3, 0.7, 0.1\], \[0.1, 0.2, 0.4, 0.8\]

其中target标签可以是:列表:torch.tensor([[1, 0, 0, 0],

0, 1, 0, 0\], \[0, 1, 0, 0\], \[0, 0, 0, 1\]\], dtype=torch.float) 索引:torch.tensor(\[0,1, 1, 3\], dtype=torch.long)

相关推荐
空中湖17 分钟前
tensorflow武林志第二卷第九章:玄功九转
人工智能·python·tensorflow
lishaoan7723 分钟前
使用tensorflow的线性回归的例子(七)
人工智能·tensorflow·线性回归
千宇宙航3 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
onceco4 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
jndingxin7 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦7 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988948 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03278 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿8 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手8 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链