分类损失函数 (一) torch.nn.CrossEntropyLoss()

1、交叉熵

  • 是一种用于衡量两个概率分布之间的距离或相似性的度量方法。
  • 机器学习中,交叉熵常用于损失函数,用于评估模型的预测结果和实际标签的差异。
  • 公式:

y:真是标签的概率分布,y':模型预测的概率分布

  • 交叉熵损失函数的目的:是最小化预测概率分布和真是概率分布之间的差异,使模型能够更好的学习到数据的内在规律和特征。

2、pytorch中的CrossEntropyLoss()

  • pytorch中的交叉熵包含两部分,softmax和交叉熵计算
  • softmax将预测值转化为概率值
  • torch.nn.CrossEntropyLoss(logits,target)

其中logits预测值是网络输出:[[0.8, 0.5, 0.2, 0.5],

0.2, 0.9, 0.3, 0.2\], \[0.4, 0.3, 0.7, 0.1\], \[0.1, 0.2, 0.4, 0.8\]

其中target标签可以是:列表:torch.tensor([[1, 0, 0, 0],

0, 1, 0, 0\], \[0, 1, 0, 0\], \[0, 0, 0, 1\]\], dtype=torch.float) 索引:torch.tensor(\[0,1, 1, 3\], dtype=torch.long)

相关推荐
月亮!3 分钟前
IoT测试全解析:从嵌入式到云端的质量链条
运维·网络·人工智能·python·物联网·测试工具·自动化
shayudiandian5 分钟前
Hugging Face Transformers快速上手
人工智能
TextIn智能文档云平台8 分钟前
大语言模型怎么提取文档信息
人工智能·语言模型·自然语言处理
白日做梦Q10 分钟前
GAN 在图像增强中的双刃剑:画质提升 vs 伪影生成
人工智能·深度学习·计算机视觉
九章云极DataCanvas11 分钟前
麦肯锡11月最新报告《Agentic AI安全部署手册》:Agentic AI安全不是“贴膏药”,而是“打地基”(附报告原文
人工智能·科技·安全·云计算·云算力
沐雪架构师20 分钟前
AI大模型Agent面试精选15题(第二辑)
人工智能·面试·职场和发展
golang学习记34 分钟前
Spring AI 1.1 新特性详解:五大核心升级全面提升AI应用开发体验
java·人工智能·spring
初九之潜龙勿用35 分钟前
基于openEuler操作系统上的AI图像分类应用开发实操与测试
人工智能·分类·数据挖掘
AI算法蒋同学37 分钟前
5 个用于人工智能基础设施的 Docker 容器
人工智能·docker·容器
小马爱打代码37 分钟前
Spring AI:DeepSeek 整合 RAG 增强检索: 实现与 PDF 对话
人工智能·spring·pdf