分类损失函数 (一) torch.nn.CrossEntropyLoss()

1、交叉熵

  • 是一种用于衡量两个概率分布之间的距离或相似性的度量方法。
  • 机器学习中,交叉熵常用于损失函数,用于评估模型的预测结果和实际标签的差异。
  • 公式:

y:真是标签的概率分布,y':模型预测的概率分布

  • 交叉熵损失函数的目的:是最小化预测概率分布和真是概率分布之间的差异,使模型能够更好的学习到数据的内在规律和特征。

2、pytorch中的CrossEntropyLoss()

  • pytorch中的交叉熵包含两部分,softmax和交叉熵计算
  • softmax将预测值转化为概率值
  • torch.nn.CrossEntropyLoss(logits,target)

其中logits预测值是网络输出:[[0.8, 0.5, 0.2, 0.5],

0.2, 0.9, 0.3, 0.2\], \[0.4, 0.3, 0.7, 0.1\], \[0.1, 0.2, 0.4, 0.8\]

其中target标签可以是:列表:torch.tensor([[1, 0, 0, 0],

0, 1, 0, 0\], \[0, 1, 0, 0\], \[0, 0, 0, 1\]\], dtype=torch.float) 索引:torch.tensor(\[0,1, 1, 3\], dtype=torch.long)

相关推荐
这张生成的图像能检测吗几秒前
(论文速读)GraphSAGE:大型图的归纳表示学习
人工智能·深度学习·机器学习·图神经网络·无监督学习
zhengfei6115 小时前
AI渗透工具——AI驱动的自动化渗透测试框架 | 基于 Model Context Protocol (MCP) 架构
人工智能·架构·自动化
袁庭新5 小时前
2025年终总结,智启
人工智能·aigc
540_5405 小时前
ADVANCE Day35
人工智能·python·深度学习
百***07455 小时前
Claude Opus 4.5 场景化实战指南:全链路赋能开发,提升效率翻倍
人工智能·gpt·开源
沛沛rh455 小时前
深度学习0基础入门:从人工规则到神经网络的进化之旅
人工智能·深度学习·神经网络
hk11246 小时前
【Quantum/Chaos】2026年度量子混沌模拟与社会技术系统演化基准索引 (Socio-Technical Benchmark)
人工智能·网络安全·系统架构·数据集·量子计算
梦想画家6 小时前
Apache AGE 实战进阶:从图查询到知识图谱+LLM知识问答全流程
人工智能·知识图谱·apache age
youcans_6 小时前
【DeepSeek论文精读】14. mHC:流形约束超连接
论文阅读·人工智能·残差网络·deepseek·超连接
wenzhangli76 小时前
实战|Ooder 钩子机制全解析:AI 协同开发与权限框架集成实战
人工智能