分类损失函数 (一) torch.nn.CrossEntropyLoss()

1、交叉熵

  • 是一种用于衡量两个概率分布之间的距离或相似性的度量方法。
  • 机器学习中,交叉熵常用于损失函数,用于评估模型的预测结果和实际标签的差异。
  • 公式:

y:真是标签的概率分布,y':模型预测的概率分布

  • 交叉熵损失函数的目的:是最小化预测概率分布和真是概率分布之间的差异,使模型能够更好的学习到数据的内在规律和特征。

2、pytorch中的CrossEntropyLoss()

  • pytorch中的交叉熵包含两部分,softmax和交叉熵计算
  • softmax将预测值转化为概率值
  • torch.nn.CrossEntropyLoss(logits,target)

其中logits预测值是网络输出:[[0.8, 0.5, 0.2, 0.5],

0.2, 0.9, 0.3, 0.2\], \[0.4, 0.3, 0.7, 0.1\], \[0.1, 0.2, 0.4, 0.8\]

其中target标签可以是:列表:torch.tensor([[1, 0, 0, 0],

0, 1, 0, 0\], \[0, 1, 0, 0\], \[0, 0, 0, 1\]\], dtype=torch.float) 索引:torch.tensor(\[0,1, 1, 3\], dtype=torch.long)

相关推荐
予枫的编程笔记几秒前
【Java进阶】深入浅出 Java 锁机制:从“单身公寓”到“交通管制”的并发艺术
java·人工智能·
科技云报道2 分钟前
科技云科技云报到:RPA+Agent,为什么可以1+1>2?
人工智能·科技
SEO_juper2 分钟前
应对 AI 概览导致的网站流量流失:诊断、优化与长期策略
人工智能·seo·数字营销
Mintopia7 分钟前
🌌 信任是否会成为未来的货币?
前端·人工智能·aigc
青春不败 177-3266-05209 分钟前
AI支持下的临床医学日常工作、论文撰写、数据分析与可视化、机器学习建模中的实践应用
人工智能·数据挖掘·数据分析·医学
闲看云起13 分钟前
大模型注意力机制进化史:从全局到稀疏,从标准到线性、滑动窗口、MQA……
人工智能·语言模型·nlp
数说星榆18113 分钟前
可信AI:透明度、公平性与问责制
人工智能
实战项目15 分钟前
基于深度学习的音乐分类算法研究
人工智能·深度学习·分类
才兄说15 分钟前
机器人租赁中的现场确认痛点
人工智能·机器人
传说故事18 分钟前
【论文自动阅读】Stable Language Guidance for Vision-Language-Action Models
人工智能·具身智能