PSO-RF|粒子群算法-随机森林-分类|多变量特征筛选-分类预测|Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将:PSO (粒子群优化算法)RF (随机森林) 相结合,进行多输入、多特征数据的 分类 预测

  • 输入训练的数据包含12个特征1个响应值 ,即通过12个输入值预测1个输出值**(多变量、多输入分类预测,个数可自行指定)**

  • 通过PSO算法优化随机森林中的:树个数、枝叶分叉树,这两个关键参数,提升预测的精度

  • 数据输入程序后统一进行自动 归一化处理,防止训练中出现过拟合

  • 自动分析计算各个输入特征的:重要性、相关性图像实现特征降维筛选(降维个数可自行选择),降低训练难度。

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、算法介绍:

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等群体行为。以下是粒子群算法的详细原理:

  1. 基本思想:

    • PSO模拟了鸟群觅食的行为,每个解空间中的潜在解被称为粒子,每个粒子代表了一个潜在的解。

    • 粒子根据自身的经验和群体的经验不断调整自己的位置,以寻找最优解。

  2. 算法步骤:

    • 初始化:随机初始化一定数量的粒子,包括位置和速度,同时初始化个体最佳位置和全局最佳位置。

    • 迭代优化:在每次迭代中,根据粒子当前位置和速度,更新粒子的位置。

    • 更新速度:根据个体最佳位置和全局最佳位置的差异,调整粒子的速度,使粒子向最优解的方向移动。

    • 位置更新:根据速度更新粒子的位置,并确保位置在搜索空间内。

    • 适应度评估:计算每个粒子的适应度值,用于评价解的优劣。

    • 更新最佳值:根据当前适应度值更新个体最佳位置和全局最佳位置。

    • 终止条件:达到指定的迭代次数或满足停止条件时终止算法。

  3. 优势:

    • PSO算法简单且易于实现,不需要求导或计算梯度。

    • 具有较好的全局搜索能力,能够跳出局部最优解。

    • 适用于连续优化问题和多维空间搜索。

四、完整程序下载:

相关推荐
前端小L34 分钟前
回溯算法专题(八):精细化切割——还原合法的「IP 地址」
数据结构·算法
Hcoco_me7 小时前
大模型面试题17:PCA算法详解及入门实操
算法
跨境卫士苏苏7 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
云雾J视界7 小时前
当算法试图解决一切:技术解决方案主义的诱惑与陷阱
算法·google·bert·transformer·attention·算法治理
Xの哲學7 小时前
Linux Miscdevice深度剖析:从原理到实战的完整指南
linux·服务器·算法·架构·边缘计算
夏乌_Wx8 小时前
练题100天——DAY23:存在重复元素Ⅰ Ⅱ+两数之和
数据结构·算法·leetcode
立志成为大牛的小牛8 小时前
数据结构——五十六、排序的基本概念(王道408)
开发语言·数据结构·程序人生·算法
沿着路走到底9 小时前
将数组倒序,不能采用reverse,算法复杂度最低
算法
IDIOT___IDIOT9 小时前
KNN and K-means 监督与非监督学习
学习·算法·kmeans