Matlab课程设计——手指静脉识别项目

手指静脉识别项目

项目方案设计介绍

本项目实现手指图像的处理和匹配算法,需要处理的数据是本人不同手指的图像,首先经过图像处理,使得指静脉的纹理增强凸显处理,然后将所有的这些图像进行相互间的匹配,检验类内和类间的匹配度,观察其是否能够明显区分开来,并据此计算正确率。

在本项目中,由于是基于算法原型的研究,因此我们选用了操作便捷的Matlab R2019b软件作为运行环境,在Windows 10 Pro for Workstation操作系统中实现算法。

算法分为以下几个过程:

图像预处理过程中,需要增强图像,提取手指区域,为识别做准备。拟采用CLAHE、直方图均衡、二值化等算法,以达到增强图像的效果;拟采用边缘检测算法实现手指的识别和提取

图像的特征提取和匹配过程中,拟采用两类不同的方法。一是局部不变特征提取算法。这些算法具有检测图像中的特征点,并对特征点的局部区域进行描述和匹配的功能。二是针对二值化图像的模板匹配,检测其匹配度。

系统识别性能

SIFT------正确率93.625%

SURF------正确率86.1875%

归一化二维互相关模板匹配------正确率99.5625%

文件结构说明

注意:以下代码中涉及的文件夹需要先自行创建,使用其它数据来源需要先自行更改字符段中涉及的文件夹。代码中的".\590"文件夹是本人指静脉数据来源文件夹。文件夹目录结构如下:

\图像处理与机器视觉创新实践:.

│ 20191121《机器视觉创新实践》课题研究任务书(一).pdf

│ 590.zip

│ cut.m

│ gaborfilte.m

│ gaborfilter2.m

│ ImageEnhancement.m

│ img2deg.m

│ input2FingerImg.m

README.md

│ LICENSE

│ sift-图像增强实现2-1.mat % 由于SIFT算法耗时较长,其结果被保存下来以便多次使用

│ SIFTpair.asv

│ SIFTpair.m

│ SURFpair.m

│ TemplateMatching.m

│ tmp.key

│ tmp.pgm

├─590

├─siftDemoV4

│ appendimages.m

│ basmati.pgm

│ book.pgm

│ box.pgm

│ defs.h

│ LICENSE

│ Makefile

│ match.c

│ match.m

│ README

│ scene.pgm

│ showkeys.m

│ sift

│ sift.m

│ siftWin32.exe

│ tmp.key

│ tmp.pgm

│ util.c

运行指南

提取ROI区域

运行cut.m

图像增强与二值化

运行ImageEnhancement.m

Gabor图像滤波

运行gaborfilte.m

SIFT算法特征检测与匹配

在执行此程序前需要将siftDemoV4文件夹及其子文件夹添加到路径,在matlab中右键菜单即可操作。

运行SIFTpair.m

SURF算法特征检测与匹配

运行SURFpair.m

归一化互相关模板匹配

运行TemplateMatching.m

相关推荐
BanyeBirth4 分钟前
C++高精度算法(加、减、乘)
开发语言·c++·算法
Aerkui11 分钟前
Python面向对象-开闭原则(OCP)
开发语言·python·开闭原则
"_rainbow_"15 分钟前
Qt中的鼠标事件
开发语言·qt
缘来的精彩23 分钟前
kotlin 多个fragment beginTransaction容器添加使用
android·开发语言·kotlin
安小牛25 分钟前
Kotlin 学习-集合
android·开发语言·学习·kotlin
Peter_chq31 分钟前
selenium快速入门
linux·开发语言·chrome·python·selenium
双叶83636 分钟前
(51单片机)串口通讯(串口通讯教程)(串口接收发送教程)
c语言·开发语言·c++·单片机·嵌入式硬件·microsoft·51单片机
计算机学长felix1 小时前
基于SpringBoot的“线上考试系统”的设计与实现(源码+数据库+文档+PPT)
spring boot·毕业设计
_x_w1 小时前
【12】数据结构之基于线性表的排序算法
开发语言·数据结构·笔记·python·算法·链表·排序算法
代码吐槽菌1 小时前
基于SpringBoot的律师事务所案件管理系统【附源码】
java·数据库·spring boot·后端·毕业设计