【一分钟快学】快速说清 残差自相关图,Q-Q图,密度图 是什么?

在时间序列分析中,残差自相关图,Q-Q图和密度图都是用于检查和理解模型的残差(误差)的一些工具。

  1. 残差自相关图(ACF图):

    • 作用: 检查残差的自相关性。
    • 解释: 这是一个显示残差与其滞后值(过去值)之间相关性的图。如果残差是随机的,它们之间不应该有相关性。如果图中有显著的相关性峰值,表示模型可能有问题。
  2. Q-Q图(Quantile-Quantile Plot):

    • 作用: 检查残差的正态性。
    • 解释: 这是一个将残差的分位数与标准正态分布的分位数进行比较的图。如果残差是正态分布的,图中的点应该大致沿着一条直线。如果点偏离直线,表示残差不符合正态分布。
  3. 密度图(Density Plot):

    • 作用: 检查残差的分布形状。
    • 解释: 这是一个类似于直方图的图,显示残差值的密度分布。如果模型合适,残差的密度图应该呈钟形(即正态分布)。任何明显的偏离都表明残差可能不满足正态性假设。
相关推荐
若叶时代5 分钟前
数据分析_Python
人工智能·python·数据分析
虾球xz8 分钟前
游戏引擎学习第286天:开始解耦实体行为
c++·人工智能·学习·游戏引擎
武子康10 分钟前
大语言模型 11 - 从0开始训练GPT 0.25B参数量 MiniMind2 准备数据与训练模型 DPO直接偏好优化
人工智能·gpt·ai·语言模型·自然语言处理
羽凌寒1 小时前
图像对比度调整(局域拉普拉斯滤波)
人工智能·计算机视觉
大模型铲屎官1 小时前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典
一点.点1 小时前
计算机视觉的简单介绍
人工智能·深度学习·计算机视觉
量子-Alex1 小时前
【目标检测】【Transformer】Swin Transformer
人工智能·目标检测·transformer
GISer_Jing1 小时前
AI知识梳理——RAG、Agent、ReAct、LangChain、LangGraph、MCP、Function Calling、JSON-RPC
人工智能
Stara05112 小时前
基于多头自注意力机制(MHSA)增强的YOLOv11主干网络—面向高精度目标检测的结构创新与性能优化
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
YuSun_WK2 小时前
目标跟踪相关综述文章
人工智能·计算机视觉·目标跟踪