【一分钟快学】快速说清 残差自相关图,Q-Q图,密度图 是什么?

在时间序列分析中,残差自相关图,Q-Q图和密度图都是用于检查和理解模型的残差(误差)的一些工具。

  1. 残差自相关图(ACF图):

    • 作用: 检查残差的自相关性。
    • 解释: 这是一个显示残差与其滞后值(过去值)之间相关性的图。如果残差是随机的,它们之间不应该有相关性。如果图中有显著的相关性峰值,表示模型可能有问题。
  2. Q-Q图(Quantile-Quantile Plot):

    • 作用: 检查残差的正态性。
    • 解释: 这是一个将残差的分位数与标准正态分布的分位数进行比较的图。如果残差是正态分布的,图中的点应该大致沿着一条直线。如果点偏离直线,表示残差不符合正态分布。
  3. 密度图(Density Plot):

    • 作用: 检查残差的分布形状。
    • 解释: 这是一个类似于直方图的图,显示残差值的密度分布。如果模型合适,残差的密度图应该呈钟形(即正态分布)。任何明显的偏离都表明残差可能不满足正态性假设。
相关推荐
RFID舜识物联网几秒前
RFID测温技术:电力设备安全监测的新利器
网络·人工智能·嵌入式硬件·物联网·安全
豪越大豪1 分钟前
豪越消防一体化安全管控平台新亮点: AI功能、智能运维以及消防处置知识库
大数据·人工智能·运维开发
9命怪猫12 分钟前
AI大模型-提示工程学习笔记13—自动提示工程师 (Automatic Prompt Engineer)
人工智能·ai·大模型·prompt
Daitu_Adam1 小时前
Windows11安装GPU版本Pytorch2.6教程
人工智能·pytorch·python·深度学习
阿正的梦工坊1 小时前
Grouped-Query Attention(GQA)详解: Pytorch实现
人工智能·pytorch·python
Best_Me071 小时前
【CVPR2024-工业异常检测】PromptAD:与只有正常样本的少样本异常检测的学习提示
人工智能·学习·算法·计算机视觉
山海青风1 小时前
从零开始玩转TensorFlow:小明的机器学习故事 4
人工智能·机器学习·tensorflow
YoseZang1 小时前
【机器学习】信息熵 交叉熵和相对熵
人工智能·深度学习·机器学习
Ronin-Lotus2 小时前
图像处理篇---图像处理中常见参数
图像处理·人工智能·信噪比·分贝·峰值信噪比·动态范围
机器视觉知识推荐、就业指导2 小时前
【数字图像处理三】图像变换与频域处理
图像处理·人工智能·计算机视觉