【一分钟快学】快速说清 残差自相关图,Q-Q图,密度图 是什么?

在时间序列分析中,残差自相关图,Q-Q图和密度图都是用于检查和理解模型的残差(误差)的一些工具。

  1. 残差自相关图(ACF图):

    • 作用: 检查残差的自相关性。
    • 解释: 这是一个显示残差与其滞后值(过去值)之间相关性的图。如果残差是随机的,它们之间不应该有相关性。如果图中有显著的相关性峰值,表示模型可能有问题。
  2. Q-Q图(Quantile-Quantile Plot):

    • 作用: 检查残差的正态性。
    • 解释: 这是一个将残差的分位数与标准正态分布的分位数进行比较的图。如果残差是正态分布的,图中的点应该大致沿着一条直线。如果点偏离直线,表示残差不符合正态分布。
  3. 密度图(Density Plot):

    • 作用: 检查残差的分布形状。
    • 解释: 这是一个类似于直方图的图,显示残差值的密度分布。如果模型合适,残差的密度图应该呈钟形(即正态分布)。任何明显的偏离都表明残差可能不满足正态性假设。
相关推荐
工藤学编程3 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅4 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技6 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102168 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧8 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)8 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了9 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好9 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能9 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案9 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记