使用llama-cpp-python制作api接口

文章目录

概要

使用llama-cpp-python制作api接口,可以接入gradio当中,参考上一节

llama-cpp-python的github网址

整体操作流程

  1. 下载llama-cpp-python。首先判断自己是在CPU的环境下还是GPU的环境下。以下操作均在魔搭提供的免费GPU环境下。
bash 复制代码
#CPU
pip install llama-cpp-python
#GPU
CMAKE_ARGS="-DGGML_CUDA=on FORCE_CMAKE=1" pip install llama-cpp-python --no-cache-dir
  1. 启动服务
    模型可以采用量化的版本,也可以采用原版本大小,看自己的硬件环境。
bash 复制代码
# 模型注意力层有32层,cpu8核,可以自己修改。
python -m llama_cpp.server --model 模型路径/模型名称.bin --n_gpu_layers 32 --m_thread 8

在魔搭上启动可能报错如下:

这也就是缺少依赖包,解决如下:

bash 复制代码
pip install starlette-context
pip install pydantic-settings

成功启动后会显示:

  1. 测试一下能不能行
    api_key 随便写,一个模板而已,因为是自己构建的api。
    base_url 就是上面图所示的,为什么加v1等会在下面解释 端口号自己可以改的,在启动服务的时候设置。
python 复制代码
!pip install -q openai
import openai

openai.api_key = 'qqqqqqqqqqqqqqqqqq'  
openai.base_url = "http://localhost:8000/v1/"  
#模型参数设置
completion = openai.completions.create(
    model="llama",
    max_tokens=256,   
    top_p = 0.2,
    temperature = 0.6,
    prompt="出现了黄疸、恶心、呕吐等症状,可能患了什么疾病?",
)
print(completion.choices[0].text)

因为采用的是量化后模型,反应速度也算比较快了,用时2.6s。

技术细节

  • API的接口缘由可以查看github中的llama_cpp/server/app.py,有详细的路由解释。

小结

至此完成了一个整体流程:从微调到量化到部署到api最终显示在网页上,涉及到的技术很多,还有很多细节需要学习,记录一下美好的时光,希望有个好的结果。敬礼!!!

相关推荐
搏博15 分钟前
基于Python3.10.6与jieba库的中文分词模型接口在Windows Server 2022上的实现与部署教程
windows·python·自然语言处理·flask·中文分词
lxmyzzs1 小时前
pyqt5无法显示opencv绘制文本和掩码信息
python·qt·opencv
萧鼎2 小时前
Python pyzmq 库详解:从入门到高性能分布式通信
开发语言·分布式·python
yujkss3 小时前
Python脚本每天爬取微博热搜-终版
开发语言·python
yzx9910133 小时前
小程序开发APP
开发语言·人工智能·python·yolo
飞翔的佩奇4 小时前
【完整源码+数据集+部署教程】二维码与查找模式检测系统源码和数据集:改进yolo11-CSwinTransformer
python·yolo·计算机视觉·数据集·yolo11·二维码与查找模式检测
大霞上仙4 小时前
实现自学习系统,输入excel文件,能学习后进行相应回答
python·学习·excel
Caven774 小时前
【pytorch】reshape的使用
pytorch·python
无规则ai4 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
你知道网上冲浪吗5 小时前
【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架
python·算法·数学建模·数值分析