NVidia 的 gpu 开源 Linux Kernel Module Driver 编译 安装 使用

见面礼,动态查看gpu使用情况,每隔2秒钟自动执行一次 nvidia-smi

$ watch -n 2 nvidia-smi

1,找一台nv kmd列表中支持的 GPU 的电脑,安装ubuntu22.04

列表见 github of the kmd source code。

因为 cuda sdk 12.3支持最高到 ubuntu 22.04,故

下载 ubuntu 22.04...iso

rufus 刷U盘

重启电脑,F2F8F10F12一起按

进入 setup,修改启动顺序,选U盘第一

一步步安装好,

reboot

修改apt 国内源

为编译Linux kernel 安装软件:

sudo apt update

sudo apt upgrade

sudo apt install build-essential

sudo apt-get update && sudo apt-get install libncurses-dev && sudo apt-get install build-essential  && sudo apt-get install flex bison && sudo apt-get install libssl-dev && sudo apt-get install binutils && sudo apt-get install libelf-dev && sudo apt-get install openssh-server && sudo apt-get install vim && sudo apt-get install bc && sudo apt-get install dwarves && sudo apt-get install zstd

  sudo apt-get update
  sudo apt-get install libssl-dev
  sudo apt-get install binutils
  sudo apt-get install libelf-dev
  sudo apt-get install dwarves

2,重新编译安装Linux kernel

sudo apt install linux-source-6.5.0

sudo apt install linux-source-6.5.0 
ls
mkdir ex_kernel_linux_debug
cd ex_kernel_linux_debug/
ls
cp /usr/src/linux-source-6.5.0.tar.bz2 ./
tar -xvjf linux-source-6.5.0.tar.bz2 
cd linux-source-6.5.0/



cp /boot/config-6.5.0-44-generic ./.config
make oldconfig

编译 kernel :

$ make -j

安装 kernel :

bash 复制代码
  $ sudo make modules_install
  $ sudo make install
  $ sudo reboot

3, 安装 cuda sdk 12.3 但保留最后两步

按照nv官方步骤,先执行step1的安装

3.1 安装之前需要设置黑名单,官方指导

bash 复制代码
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/#removing-cuda-toolkit-and-driver

具体操作:

复制如下:

bash 复制代码
 8.3.6. Ubuntu

    Create a file at /etc/modprobe.d/blacklist-nouveau.conf with the following contents:

    blacklist nouveau
    options nouveau modeset=0

Regenerate the kernel initramfs:

sudo update-initramfs -u

3.2 安装 cuda sdk step 1

操作链接:

bash 复制代码
https://developer.nvidia.com/cuda-12-3-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_local
bash 复制代码
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin

sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600

wget https://developer.download.nvidia.com/compute/cuda/12.3.0/local_installers/cuda-repo-ubuntu2204-12-3-local_12.3.0-545.23.06-1_amd64.deb

sudo dpkg -i cuda-repo-ubuntu2204-12-3-local_12.3.0-545.23.06-1_amd64.deb

sudo cp /var/cuda-repo-ubuntu2204-12-3-local/cuda-*-keyring.gpg /usr/share/keyrings/

sudo apt-get update

sudo apt-get -y install cuda-toolkit-12-3

4, 使用开源代码替代step2

4.1 下载编译 NV gpu 的开源 kmd

下载:

https://github.com/NVIDIA/open-gpu-kernel-modules

bash 复制代码
git clone https://github.com/NVIDIA/open-gpu-kernel-modules.git

cd open-gpu-kernel-modules

git checkout 545.23.06

git branch

有时候下载会失败,下载下来后做好备份。或者 fork 到自己的github 账号后再clone

4.2 编译安装

bash 复制代码
make clean
make -j12
sudo make modules_install
sudo make install
sudo reboot

5,执行step 3 安装 cuda

bash 复制代码
sudo apt-get install -y cuda-drivers-545

测试:

$ nvidia-smi

$ ./vectorAdd

6,怎么验证这个kmd是从 源码安装的呢?

在开源代码中 加点printk等代码看看:

重新编译安装

$ make modules -j

$ make modules_install -j

重启电脑

$ sudo reboot

然后执行:

$ sudo dmesg

这名加载的是开源代码的ko文件。

运行APP:

备忘个链接:

Index of /XFree86/FreeBSD-x86_64/520.56.06

https://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf

https://www.amax.com/unleashing-next-level-gpu-performance-with-nvidia-nvlink/

https://www.nvidia.com/en-us/data-center/nvlink/

https://hc34.hotchips.org/assets/program/conference/day2/Network%20and%20Switches/NVSwitch%20HotChips%202022%20r5.pdf
相关推荐
探索云原生2 天前
大模型推理指南:使用 vLLM 实现高效推理
ai·云原生·kubernetes·gpu·vllm
若石之上5 天前
DeepSpeed:PyTorch优化库,使模型分布式训练能高效使用内存和更快速
pytorch·内存·gpu·deepspeed·速度·zero
qiang426 天前
想租用显卡训练自己的网络?AutoDL保姆级使用教程(PyCharm版)
pycharm·gpu·autodl·租显卡
扫地的小何尚8 天前
NVIDIA RTX 系统上使用 llama.cpp 加速 LLM
人工智能·aigc·llama·gpu·nvidia·cuda·英伟达
藓类少女9 天前
【深度学习】使用硬件加速模型训练速度
人工智能·深度学习·分布式训练·gpu
centurysee11 天前
【一文搞懂】GPU硬件拓扑与传输速度
gpu·nvidia
探索云原生16 天前
GPU 环境搭建指南:如何在裸机、Docker、K8s 等环境中使用 GPU
ai·云原生·kubernetes·go·gpu
一个处女座的程序猿17 天前
AI之硬件对比:据传英伟达Nvidia2025年将推出RTX 5090-32GB/RTX 5080-24GB、华为2025年推出910C/910D
人工智能·gpu
GPUStack19 天前
在昇腾Ascend 910B上运行Qwen2.5推理
ai·大模型·gpu·npu·genai