分类算法是一种机器学习算法,其主要目的是从数据中发现规律并将数据分成不同的类别。分类算法通过对已知类别训练集的计算和分析,从中发现类别规则并预测新数据的类别。常见的分类算法包括决策树、朴素贝叶斯、逻辑回归、K-最近邻、支持向量机等。分类算法广泛应用于金融、医疗、电子商务等领域,以帮助人们更好地理解和利用数据。
1、K-最近邻
kNN是一个基本而简单的分类算法,作为监督学习,那么KNN模型需要的是有标签的训练数据,对于新样本的类别由与新样本距离最近的k个训练样本点按照分类决策规则决定。k近邻法1968年由Cover和Hart提出。
K-近邻算法中,K表示距离最近的K个实例。
简单,易于理解,易于实现,无需估计参数,无需训练;
适合对稀有事件进行分类(例如当流失率很低时,比如低于0.5%,构造流失预测模型);
特别适合于多分类问题(multi-modal,对象具有多个类别标签),例如根据基因特征来判断其功能分类,kNN比SVM的表现要好。
懒惰算法,对测试样本分类时的计算量大,内存开销大,评分慢;可解释性较差,无法给出决策树那样的规则。
2、决策树
3、朴素贝叶斯
4、决策树-SVM
决策树算法的本质是一种图结构,只需要问一系列问题就可以对数据进行分类。