Six common classification algorithms in machine learning

分类算法是一种机器学习算法,其主要目的是从数据中发现规律并将数据分成不同的类别。分类算法通过对已知类别训练集的计算和分析,从中发现类别规则并预测新数据的类别。常见的分类算法包括决策树、朴素贝叶斯、逻辑回归、K-最近邻、支持向量机等。分类算法广泛应用于金融、医疗、电子商务等领域,以帮助人们更好地理解和利用数据。

1、K-最近邻

kNN是一个基本而简单的分类算法,作为监督学习,那么KNN模型需要的是有标签的训练数据,对于新样本的类别由与新样本距离最近的k个训练样本点按照分类决策规则决定。k近邻法1968年由Cover和Hart提出。
K-近邻算法中,K表示距离最近的K个实例。

简单,易于理解,易于实现,无需估计参数,无需训练;

适合对稀有事件进行分类(例如当流失率很低时,比如低于0.5%,构造流失预测模型);

特别适合于多分类问题(multi-modal,对象具有多个类别标签),例如根据基因特征来判断其功能分类,kNN比SVM的表现要好。

懒惰算法,对测试样本分类时的计算量大,内存开销大,评分慢;可解释性较差,无法给出决策树那样的规则。

2、决策树

3、朴素贝叶斯

4、决策树-SVM

决策树算法的本质是一种图结构,只需要问一系列问题就可以对数据进行分类。

5、支持向量机

6、随机森林

7、逻辑回归

相关推荐
985小水博一枚呀26 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan27 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀31 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路40 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子1 小时前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川5 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程