【单目3D检测】smoke(1):模型方案详解

纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。

Introduction


2D目标检测目前已经在精度和速度上都取得了不错的成绩,而3D目标检测由于需要同时估计出目标的位置与姿态,因此相比2D是一个更具挑战的方向。

目前性能最好的3D目标检测还是需要依赖激光雷达的点云或者点云+图像融合,考虑到成本因素,仅依靠单目摄像头的3D目标检测还是非常值得研究的。

本作有以下几个贡献点:

  • 提出了一个one-stage单目3D检测方法,思路简答,且end-to-end。
  • 3D框8个角点的计算使用了多种方式得到,每种方式都参与了loss的计算,使训练更容易收敛。
  • 在KITTI数据集上达到了SOTA。

Detection Problem


SMOKE Approach


Backbone

主干网络选择使用DLA-34,其中部分卷积换成了DCN,最后的输出相对于原始图4次下采样的特征图。论文还将BN换成了GN(GroupNorm),因为GN对batch size的大小不那么敏感,且在训练中对噪声更鲁棒。

3D Detection Network

head部分一共两条分支,一条用于检测目标中心点位置同时分类,另一条回归目标的3D信息。

Keypoint Branch

中心点的估计与CenterNet那片论文的思路相似,不同的是CenterNet里用的是2D框的中心点,而这里用的是3D框的中心点在图像上的投影点,如下图所示:

Regression Branch

根据深度信息,投影点(x,y)坐标,和相机参数,可计算得到3D中心点坐标


预测长宽高,有点像anchor的思想

偏航角:ray到Z轴角度



Loss Function

偏航角pred与尺寸gt,坐标gt构成的3d box与gt的回归loss
偏航角gt与尺寸pred,坐标gt构成的3d box与gt的回归loss
偏航角gt与尺寸gt,坐标pred构成的3d box与gt的回归loss

Keypoint Classification分支的loss跟CenterNet中一样,用的是focal loss。

Regression分支的loss计算比较有新意,没有采取直接计算τ \tauτ中8个参数的loss,而是通过在角度、尺寸、坐标位置三种分支下得到的3D框的8个角点去和真值比较计算loss。

总loss:

cpp 复制代码
# mmdetection3d/mmdet3d/models/dense_heads/smoke_mono3d_head.py
# 角度分支下计算得到的3D框,所谓角度分支即只有角度用的是预测值,而坐标位置和尺寸两个用的是真值
bbox3d_yaws = self.bbox_coder.encode(gt_locations, gt_dimensions, orientations, img_metas)
# 尺寸分支下计算得到的3D框
bbox3d_dims = self.bbox_coder.encode(gt_locations, dimensions, gt_orientations, img_metas)
# 坐标位置分支下计算得到的3D框
bbox3d_locs = self.bbox_coder.encode(locations, gt_dimensions, gt_orientations, img_metas)
...
...
# 三种分支下分别计算推理出的8个角点的和真值8个角点的loss
loss_bbox_oris = self.loss_bbox(pred_bboxes['ori'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])

loss_bbox_dims = self.loss_bbox(pred_bboxes['dim'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])

loss_bbox_locs = self.loss_bbox(pred_bboxes['loc'].corners[reg_inds, ...], target_labels['gt_cors'][reg_inds, ...])

loss_bbox = loss_bbox_dims + loss_bbox_locs + loss_bbox_oris

Conclusion


纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息,而是采取直接回归3D信息,这种思路简单又高效,并不需要复杂的前后处理,而且是一种one stage方法,对于实际业务部署也很友好。

参考:https://blog.csdn.net/qq_30483585/article/details/124954023

相关推荐
Coovally AI模型快速验证14 小时前
深度学习驱动的视频异常检测(VAD),AI如何让监控更智能?
人工智能·深度学习·目标检测·机器学习·自动驾驶·无人机
容智信息15 小时前
容智信息加入大模型产业联盟,Hyper Agent推动企业级智能体规模化落地
大数据·人工智能·自然语言处理·自动驾驶
车企求职辅导16 小时前
新能源汽车零部件全品类汇总
人工智能·算法·车载系统·自动驾驶·汽车·智能驾驶·智能座舱
Godspeed Zhao16 小时前
自动驾驶中的传感器技术82——Sensor Fusion(5)
人工智能·机器学习·自动驾驶
程序员龙一17 小时前
百度Apollo Cyber RT底层原理解析
自动驾驶·ros·apollo·cyber rt
Godspeed Zhao18 小时前
自动驾驶中的传感器技术79——Sensor Fusion(2)
人工智能·fpga开发·自动驾驶
milan-xiao-tiejiang18 小时前
ROS2面试准备
c++·面试·自动驾驶
卡奥斯开源社区官方19 小时前
技术落地里程碑:北京发放全国首批L3自动驾驶号牌,智驾商业化闭环正式打通
人工智能·机器学习·自动驾驶
Godspeed Zhao19 小时前
自动驾驶中的传感器技术81——Sensor Fusion(4)
人工智能·机器学习·自动驾驶
容智信息1 天前
荣膺ISC.AI 2025创新百强!容智信息HyperAgent超级智能体,引领企业级智能体落地新范式
人工智能·自然语言处理·金融·自动驾驶