pytorch学习(十三)torch维度变换

包含了flatten、view reshape transpose permute squeeze unsqueeze cat stack;在琢磨一遍之后就比较好理解了。

1.代码

复制代码
import torch
import numpy as np

#生成一个2组3行4列的数据
data = torch.randn((2,3,4))
print("data.shape:\n",data.shape)
print("data:\n",data)

#对数据进行压平,行以及行以后的维度全部展平
#具体的就是一行一行的排列起来
flatten_data = torch.flatten(data,start_dim=1)
print("flatten_data:\n",flatten_data)

#可以这样想,原来的数据展成一行,然后每4个数据构成一行,每两行构成一组,最后构成三组
view_data = data.view((3,2,4))
print("view_data:\n",view_data)

#和view基本一致的用法和功能
reshape_data = torch.reshape(data,(3,2,4))
print("reshape_data:\n",reshape_data)

#transpose每次只能转换两个维度
#表示沿着组的方向, 变成了行,沿组方向也就是[0,0,:] 和[1,0,:]变成了一个组
transpose_data1 = torch.transpose(data,1,0)
print("transpose_data1:\n",transpose_data1)

#表示沿组的方向变成了列,也就是[:,0,0]变成了一行数据,结合着[:,1,0],[:,2,0]变成了一组数据
transpose_data2 = torch.transpose(data,2,0)
print("transpose_data2:\n",transpose_data2)

#这个可以同时变换多个维度
#这个要怎么理解呢?
#x轴变成了y轴,y轴变成了z轴,z轴变成了x轴
#无论怎么变化,记清楚 x方向是一行,y方向是一列,z方向是一组就可以了
permute_data = data.permute(2,0,1)
print("permute_data:\n",permute_data)

#在指定的维度上升一个维度
squeeze_data = torch.squeeze(data,dim=0)
print("squeeze_data:\n",squeeze_data)

#去掉维度为1的维度
unsqueeze_data = torch.unsqueeze(squeeze_data,dim=0)
print("unsqueeze_data:\n",unsqueeze_data)

#
x1 = torch.tensor([[11, 21, 31], [21, 31, 41]], dtype=torch.int)
x1.shape  # torch.Size([2, 3])
print(x1)
# x2
x2 = torch.tensor([[12, 22, 32], [22, 32, 42]], dtype=torch.int)
x2.shape  # torch.Size([2, 3])
print(x2)
x3 =torch.cat((x1,x2),0)  #按维数0(行)拼接
print("按行拼接:\n",x3)

x4 =torch.cat((x1,x2),1)  #按维数0(行)拼接
print("按列拼接:\n",x4)

#0的时候是升维度
#非0的时候就是升维度后,0和 设置到dim中,其他的按顺序前移动一个
#比如 0  1  2 现在dim=1 那么0跑到1位置,1往前移动一个,变成了 1 0 2
#比如 0 1 2 现在dim=2, 那么0跑到了2位置,1 2 顺势前移动一个位置,变成了 1 2 0
a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = torch.tensor([[11, 22, 33], [44, 55, 66], [77, 88, 99]])
c = torch.stack([a, b], 0)
d = torch.stack([a, b], 1) #看来就是把
e = torch.stack([a, b], 2)
print("升维度拼接:\n",c)
print("拼接-类比与c.permute(1,0,2):\n",d)
print("拼接-类似于c.permute(1,2,0):\n",e)
print("c11",c.permute(1,0,2))
print("c11",c.permute(1,2,0))
相关推荐
向量引擎小橙1 分钟前
深度|AI浪潮已至:在2026年,我们真正需要掌握什么?
人工智能
2501_9240641111 分钟前
2025年APP隐私合规测试主流方法与工具深度对比
大数据·网络·人工智能
用户51914958484526 分钟前
链式利用CVE-2024–24919:通过Checkpoint安全网关LFI漏洞挖掘敏感SSH密钥
人工智能
linghuocaishui35 分钟前
京东用工平台实践:亲测案例复盘分享
人工智能·python
da_vinci_x37 分钟前
【2D场景】16:9秒变21:9?PS “液态缩放” + AI 补全,零成本适配全面屏
前端·人工智能·游戏·aigc·设计师·贴图·游戏美术
算法狗243 分钟前
大模型面试题:大模型FFN中用SwiGLU为啥设置FFN的映射为8/3*d呢?
人工智能
humors2211 小时前
四步生成喜欢的图片
人工智能·ai·图片·背景·祝福·头像
_codemonster1 小时前
BERT和Transformer的双向性理解
人工智能·bert·transformer
十铭忘1 小时前
SAM2跟踪的理解19——位置编码
人工智能·深度学习·计算机视觉
张二娃同学1 小时前
深度学习入门篇——Github的使用和项目的导入
人工智能·git·深度学习·开源·github