【STM32 HAL库】全双工I2S+双缓冲DMA的使用

1、配置I2S

我们的有效数据是32位的,使用飞利浦格式。

2、配置DMA

**这里需要注意:**i2s的DR寄存器是16位的,如果需要发送32位的数据,是需要写两次DR寄存器的,所以DMA的外设数据宽度设置16位,而不是32位。

3、完善I2S文件

i2s.c和i2s.h文件都是MX自动生成的,并且生成MX_I2S3_Init 函数进行了初始化,MX_I2S3_Init 函数里面其实依次调用了HAL_I2S_Init库函数(和MCU不相关的初始化)和HAL_I2S_MspInit库函数(是个weak函数,和MCU相关的初始化)。所以,我们自己要写的代码也加到这个文件中。

c 复制代码
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    i2s.c
  * @brief   This file provides code for the configuration
  *          of the I2S instances.
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "i2s.h"

/* USER CODE BEGIN 0 */
#include "stdio.h"

#define  TX_DATA_16                 (0x1234)
#define  TX_DATA_32                 (0x12345678)
#define  HALF_TX_BUFFER_SIZE        (256)
#define  TX_BUFFER_SIZE             (HALF_TX_BUFFER_SIZE*2)
uint32_t tx_buffer[TX_BUFFER_SIZE];

/* USER CODE END 0 */

I2S_HandleTypeDef hi2s3;
DMA_HandleTypeDef hdma_spi3_tx;

/* I2S3 init function */
void MX_I2S3_Init(void)
{

  /* USER CODE BEGIN I2S3_Init 0 */
	//这里有一点需要注�???,i2s的DR�???16位的,�???以如果想发�??32位的数据,得写两次,
	//如果想发�???0x12345678,就得先发�???0x1234,再发�???0x5678(标准飞利浦格式是高位在前)
	//但是32位数组是小端�???,�???以就�???要重组一�???
    for(int i=0;i<TX_BUFFER_SIZE;i++)
    {
    	*(tx_buffer+i)= (TX_DATA_32<<16)|(TX_DATA_32>>16);
    }
  /* USER CODE END I2S3_Init 0 */

  /* USER CODE BEGIN I2S3_Init 1 */

  /* USER CODE END I2S3_Init 1 */
  hi2s3.Instance = SPI3;
  hi2s3.Init.Mode = I2S_MODE_MASTER_TX;
  hi2s3.Init.Standard = I2S_STANDARD_PHILIPS;
  hi2s3.Init.DataFormat = I2S_DATAFORMAT_32B;
  hi2s3.Init.MCLKOutput = I2S_MCLKOUTPUT_ENABLE;
  hi2s3.Init.AudioFreq = I2S_AUDIOFREQ_48K;
  hi2s3.Init.CPOL = I2S_CPOL_HIGH;
  hi2s3.Init.ClockSource = I2S_CLOCK_PLL;
  hi2s3.Init.FullDuplexMode = I2S_FULLDUPLEXMODE_DISABLE;
  if (HAL_I2S_Init(&hi2s3) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2S3_Init 2 */

  /* USER CODE END I2S3_Init 2 */

}

void HAL_I2S_MspInit(I2S_HandleTypeDef* i2sHandle)
{

  GPIO_InitTypeDef GPIO_InitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
  if(i2sHandle->Instance==SPI3)
  {
  /* USER CODE BEGIN SPI3_MspInit 0 */

  /* USER CODE END SPI3_MspInit 0 */

  /** Initializes the peripherals clock
  */
    PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_I2S;
    PeriphClkInitStruct.PLLI2S.PLLI2SN = 192;
    PeriphClkInitStruct.PLLI2S.PLLI2SR = 2;
    if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
    {
      Error_Handler();
    }

    /* I2S3 clock enable */
    __HAL_RCC_SPI3_CLK_ENABLE();

    __HAL_RCC_GPIOA_CLK_ENABLE();
    __HAL_RCC_GPIOC_CLK_ENABLE();
    /**I2S3 GPIO Configuration
    PA4     ------> I2S3_WS
    PC7     ------> I2S3_MCK
    PC10     ------> I2S3_CK
    PC12     ------> I2S3_SD
    */
    GPIO_InitStruct.Pin = WCK_Pin;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
    HAL_GPIO_Init(WCK_GPIO_Port, &GPIO_InitStruct);

    GPIO_InitStruct.Pin = GPIO_PIN_7|BCK_Pin|DI_Pin;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    GPIO_InitStruct.Alternate = GPIO_AF6_SPI3;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

    /* I2S3 DMA Init */
    /* SPI3_TX Init */
    hdma_spi3_tx.Instance = DMA1_Stream5;
    hdma_spi3_tx.Init.Channel = DMA_CHANNEL_0;
    hdma_spi3_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
    hdma_spi3_tx.Init.PeriphInc = DMA_PINC_DISABLE;
    hdma_spi3_tx.Init.MemInc = DMA_MINC_ENABLE;
    hdma_spi3_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
    hdma_spi3_tx.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    hdma_spi3_tx.Init.Mode = DMA_CIRCULAR;
    hdma_spi3_tx.Init.Priority = DMA_PRIORITY_LOW;
    hdma_spi3_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
    if (HAL_DMA_Init(&hdma_spi3_tx) != HAL_OK)
    {
      Error_Handler();
    }

    __HAL_LINKDMA(i2sHandle,hdmatx,hdma_spi3_tx);

  /* USER CODE BEGIN SPI3_MspInit 1 */

  /* USER CODE END SPI3_MspInit 1 */
  }
}

void HAL_I2S_MspDeInit(I2S_HandleTypeDef* i2sHandle)
{

  if(i2sHandle->Instance==SPI3)
  {
  /* USER CODE BEGIN SPI3_MspDeInit 0 */

  /* USER CODE END SPI3_MspDeInit 0 */
    /* Peripheral clock disable */
    __HAL_RCC_SPI3_CLK_DISABLE();

    /**I2S3 GPIO Configuration
    PA4     ------> I2S3_WS
    PC7     ------> I2S3_MCK
    PC10     ------> I2S3_CK
    PC12     ------> I2S3_SD
    */
    HAL_GPIO_DeInit(WCK_GPIO_Port, WCK_Pin);

    HAL_GPIO_DeInit(GPIOC, GPIO_PIN_7|BCK_Pin|DI_Pin);

    /* I2S3 DMA DeInit */
    HAL_DMA_DeInit(i2sHandle->hdmatx);
  /* USER CODE BEGIN SPI3_MspDeInit 1 */

  /* USER CODE END SPI3_MspDeInit 1 */
  }
}

/* USER CODE BEGIN 1 */

int I2S_DMA_Start_Transmit()
{
	return HAL_I2S_Transmit_DMA(&hi2s3, (uint16_t *)tx_buffer, TX_BUFFER_SIZE);
}

int I2S_DMA_Stop()
{
	return HAL_I2S_DMAStop(&hi2s3);
}


/**
  * @brief  Tx Transfer Half completed callbacks
  * @param  hi2s pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval None
  */
void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
	printf("%s\r\n",__func__);
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hi2s);
  for(int i=0;i<HALF_TX_BUFFER_SIZE;i++)
  {
	  *(tx_buffer+i)+=1;
  }

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_I2S_TxHalfCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Tx Transfer completed callbacks
  * @param  hi2s pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval None
  */
void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s)
{
	printf("%s\r\n",__func__);

  /* Prevent unused argument(s) compilation warning */
  UNUSED(hi2s);
  for(int i=0;i<HALF_TX_BUFFER_SIZE;i++)
  {
  	  *(tx_buffer+HALF_TX_BUFFER_SIZE+i)-=1;
  }
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_I2S_TxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  I2S error callbacks
  * @param  hi2s pointer to a I2S_HandleTypeDef structure that contains
  *         the configuration information for I2S module
  * @retval None
  */
void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s)
{
  /* Prevent unused argument(s) compilation warning */
  printf("HAL_I2S_Error\r\n");

  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_I2S_ErrorCallback could be implemented in the user file
   */
}

/* USER CODE END 1 */
  1. 其实这里使用了DMA双buffer的思路,但是我没有使用双buffer,而是一个buffer的前后部分。当TxHalfCplt 的时候,我们去更新buffer前半部分数据,当TxCplt的时候,我们去更新buffer的后半部分数据。HAL库没有很好封装DMA双buffer的配置函数。
  2. 关于DMA的buffer填充问题,I2S的DR寄存器是15位的,所以配置DMA的数据宽度也是16位的,如果I2S是32位的数据格式,那么需要写两次DR寄存器才能组一帧I2S数据,例如I2S想发送0x12345678,那么就得先发送0x1234,再发送0x5678(I2S飞利浦格式就是这样,高位在前),所以填充buffer的时候,也得按该顺序填充。
  3. 关于全双工DMA的封装,HAL好像也没有很好的支持,等下次再介绍。。。

4、I2S实现DMA双buffer发送

我们如果看过HAL库接口的话,就应该知道。在dma_ex文件中封装了DMA双buffer的接口,但是在i2s文件或者i2s_ex中没有封装双buffer的接口。所以,我们打算仿照HAL_I2S_Transmit_DMA库函数实现一个函数。

c 复制代码
/* USER CODE BEGIN 1 */
static void I2S_DMAM0TxHalfCplt(DMA_HandleTypeDef *hdma)
{
  I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */

  /* Call user Tx half complete callback */
  printf("%s\r\n",__func__);
}

static void I2S_DMAM0TxCplt(DMA_HandleTypeDef *hdma)
{
	I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */

	  /* Call user Tx complete callback */
	printf("%s\r\n",__func__);
}

static void I2S_DMAM1TxHalfCplt(DMA_HandleTypeDef *hdma)
{
  I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */

  /* Call user Tx half complete callback */
  printf("%s\r\n",__func__);
}

static void I2S_DMAM1TxCplt(DMA_HandleTypeDef *hdma)
{
	I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */

	  /* Call user Tx complete callback */
	printf("%s\r\n",__func__);
}

static void I2S_DMA_Error(DMA_HandleTypeDef *hdma)
{
	I2S_HandleTypeDef *hi2s = (I2S_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; /* Derogation MISRAC2012-Rule-11.5 */
	printf("%s\r\n",__func__);
}

static HAL_StatusTypeDef HAL_I2S_Transmit_DMA_DBuffer(I2S_HandleTypeDef *hi2s, uint16_t *pData0,uint16_t *pData1, uint16_t Size)
{
  uint32_t tmpreg_cfgr;

  if ((pData0 == NULL) || (Size == 0U))
  {
    return  HAL_ERROR;
  }

  /* Process Locked */
  __HAL_LOCK(hi2s);

  if (hi2s->State != HAL_I2S_STATE_READY)
  {
    __HAL_UNLOCK(hi2s);
    return HAL_BUSY;
  }

  /* Set state and reset error code */
  hi2s->State = HAL_I2S_STATE_BUSY_TX;
  hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
  hi2s->pTxBuffPtr = pData0;

  tmpreg_cfgr = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);

  if ((tmpreg_cfgr == I2S_DATAFORMAT_24B) || (tmpreg_cfgr == I2S_DATAFORMAT_32B))
  {
    hi2s->TxXferSize = (Size << 1U);
    hi2s->TxXferCount = (Size << 1U);
  }
  else
  {
    hi2s->TxXferSize = Size;
    hi2s->TxXferCount = Size;
  }

  /* Set the I2S Tx DMA Half transfer complete callback */
  hi2s->hdmatx->XferHalfCpltCallback = I2S_DMAM0TxHalfCplt;

  /* Set the I2S Tx DMA transfer complete callback */
  hi2s->hdmatx->XferCpltCallback = I2S_DMAM0TxCplt;

  hi2s->hdmatx->XferM1HalfCpltCallback=I2S_DMAM1TxHalfCplt;//callback
  hi2s->hdmatx->XferM1CpltCallback=I2S_DMAM1TxCplt;//callback

  /* Set the DMA error callback */
  hi2s->hdmatx->XferErrorCallback = I2S_DMA_Error;

  /* Enable the Tx DMA Stream/Channel */
  if (HAL_OK != HAL_DMAEx_MultiBufferStart_IT(hi2s->hdmatx,
		  (uint32_t)hi2s->pTxBuffPtr,
		  (uint32_t)&hi2s->Instance->DR,
		  (uint32_t)pData1,
		  hi2s->TxXferSize))
  {
    /* Update SPI error code */
    SET_BIT(hi2s->ErrorCode, HAL_I2S_ERROR_DMA);
    hi2s->State = HAL_I2S_STATE_READY;

    __HAL_UNLOCK(hi2s);
    return HAL_ERROR;
  }

  /* Check if the I2S is already enabled */
  if (HAL_IS_BIT_CLR(hi2s->Instance->I2SCFGR, SPI_I2SCFGR_I2SE))
  {
    /* Enable I2S peripheral */
    __HAL_I2S_ENABLE(hi2s);
  }

  /* Check if the I2S Tx request is already enabled */
  if (HAL_IS_BIT_CLR(hi2s->Instance->CR2, SPI_CR2_TXDMAEN))
  {
    /* Enable Tx DMA Request */
    SET_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN);
  }

  __HAL_UNLOCK(hi2s);
  return HAL_OK;
}

注意几点:

  1. 这些函数还是写在i2s.c文件中。
  2. 相比原函数,在函数参数上多了一个buffer地址。
  3. 原函数中的回调函数都是本地函数,不供其他文件调用,所以全部重新定义在我们的本文件中。并且多了m1 buffer的回调函数。
  4. DMA_Start函数更换为双buffer函数接口。其他的地方都没有改变。

5、全双工I2S实现

配置全双工Master模式,其实看源码就知道,当配置全双工的时候,用到了两个i2s外设。

如果我们配置i2s为Master_Tx,那么i2s_ex就会自动被配置为Slave_Rx。当然,这些在HAL库中都已经封装好了,我们使用起来还是不麻烦的。

但是,HAL库封装的函数很奇怪,所以我们仿照原库函数自己修改了一下。

c 复制代码
static void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
	printf("%s\r\n",__func__);
}

static void I2S_DMARxCplt(DMA_HandleTypeDef *hdma)
{
	printf("%s\r\n",__func__);
}

static void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
{
	printf("%s\r\n",__func__);
}

static void I2S_DMATxCplt(DMA_HandleTypeDef *hdma)
{
	printf("%s\r\n",__func__);
}

static HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA_Modify(I2S_HandleTypeDef *hi2s,
                                                uint16_t *pTxData,
                                                uint16_t *pRxData,
                                                uint16_t Size)
{
  uint32_t *tmp = NULL;
  uint32_t tmp1 = 0U;
  HAL_StatusTypeDef errorcode = HAL_OK;

  if (hi2s->State != HAL_I2S_STATE_READY)
  {
    errorcode = HAL_BUSY;
    goto error;
  }

  if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
  {
    return  HAL_ERROR;
  }

  /* Process Locked */
  __HAL_LOCK(hi2s);

  hi2s->pTxBuffPtr = pTxData;
  hi2s->pRxBuffPtr = pRxData;

  tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN);
  /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended
  is selected during the I2S configuration phase, the Size parameter means the number
  of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data
  frame is selected the Size parameter means the number of 16-bit data length. */
  if ((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B))
  {
    hi2s->TxXferSize  = (Size << 1U);
    hi2s->TxXferCount = (Size << 1U);
    hi2s->RxXferSize  = (Size << 1U);
    hi2s->RxXferCount = (Size << 1U);
  }
  else
  {
    hi2s->TxXferSize  = Size;
    hi2s->TxXferCount = Size;
    hi2s->RxXferSize  = Size;
    hi2s->RxXferCount = Size;
  }

  hi2s->ErrorCode = HAL_I2S_ERROR_NONE;
  hi2s->State     = HAL_I2S_STATE_BUSY_TX_RX;

  /* Set the I2S Rx DMA Half transfer complete callback */
  hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt;

  /* Set the I2S Rx DMA transfer complete callback */
  hi2s->hdmarx->XferCpltCallback  = I2S_DMARxCplt;

  /* Set the I2S Rx DMA error callback */
  hi2s->hdmarx->XferErrorCallback = NULL;

  /* Set the I2S Tx DMA Half transfer complete callback as NULL */
  hi2s->hdmatx->XferHalfCpltCallback  = I2S_DMATxHalfCplt;

  /* Set the I2S Tx DMA transfer complete callback as NULL */
  hi2s->hdmatx->XferCpltCallback  = I2S_DMATxCplt;

  /* Set the I2S Tx DMA error callback */
  hi2s->hdmatx->XferErrorCallback = NULL;

  tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG;
  /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */
  if ((tmp1 == I2S_MODE_MASTER_TX) || (tmp1 == I2S_MODE_SLAVE_TX))
  {
    /* Enable the Rx DMA Stream */
    tmp = (uint32_t *)&pRxData;
    HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, *(uint32_t *)tmp, hi2s->RxXferSize);

    /* Enable Rx DMA Request */
    SET_BIT(I2SxEXT(hi2s->Instance)->CR2, SPI_CR2_RXDMAEN);

    /* Enable the Tx DMA Stream */
    tmp = (uint32_t *)&pTxData;
    HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t *)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize);

    /* Enable Tx DMA Request */
    SET_BIT(hi2s->Instance->CR2, SPI_CR2_TXDMAEN);

    /* Check if the I2S is already enabled */
    if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
    {
      /* Enable I2Sext(receiver) before enabling I2Sx peripheral */
      __HAL_I2SEXT_ENABLE(hi2s);

      /* Enable I2S peripheral after the I2Sext */
      __HAL_I2S_ENABLE(hi2s);
    }
  }
  else
  {
    /* Check if Master Receiver mode is selected */
    if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX)
    {
      /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read
      access to the SPI_SR register. */
      __HAL_I2S_CLEAR_OVRFLAG(hi2s);
    }
    /* Enable the Tx DMA Stream */
    tmp = (uint32_t *)&pTxData;
    HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t *)tmp, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, hi2s->TxXferSize);

    /* Enable Tx DMA Request */
    SET_BIT(I2SxEXT(hi2s->Instance)->CR2, SPI_CR2_TXDMAEN);

    /* Enable the Rx DMA Stream */
    tmp = (uint32_t *)&pRxData;
    HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t *)tmp, hi2s->RxXferSize);

    /* Enable Rx DMA Request */
    SET_BIT(hi2s->Instance->CR2, SPI_CR2_RXDMAEN);

    /* Check if the I2S is already enabled */
    if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE)
    {
      /* Enable I2Sext(transmitter) before enabling I2Sx peripheral */
      __HAL_I2SEXT_ENABLE(hi2s);
      /* Enable I2S peripheral before the I2Sext */
      __HAL_I2S_ENABLE(hi2s);
    }
  }

error :
  __HAL_UNLOCK(hi2s);
  return errorcode;
}

相比原函数,我们就修改了一个地方,那就是把TX的回调函数也赋值了,其实这里不理解的地方有两个:

  1. 为什么不给TX的回调函数赋值
  2. 为什么RX的回调函数命名TxRx的回调函数
    我们在实验中直接将DI接在DO上了,最后看看调试结果

    最后,如果想在全双工中使用DMA双buffer,可以仿照上文中函数的修改即可,这里就不做示范了。
相关推荐
虾球xz32 分钟前
游戏引擎学习第11天
stm32·学习·游戏引擎
DevinLGT1 小时前
6Pin Type-C Pin脚定义:【图文讲解】
人工智能·单片机·嵌入式硬件
小A1592 小时前
STM32完全学习——系统时钟设置
stm32·嵌入式硬件·学习
CoderBob2 小时前
【EmbeddedGUI】脏矩阵设计说明
c语言·单片机
陌夏微秋3 小时前
51单片机基础02 动态数码管显示-并串转换
arm开发·单片机·嵌入式硬件·51单片机·硬件工程·信息与通信·信号处理
面包板扎3 小时前
51单片机应用开发---LCD1602显示应用
单片机·嵌入式硬件·51单片机
面包板扎4 小时前
51单片机应用开发(进阶)---定时器应用(电子时钟)
单片机
好想有猫猫4 小时前
【51单片机】LCD1602液晶显示屏
c语言·单片机·嵌入式硬件·51单片机·1024程序员节
陌夏微秋4 小时前
51单片机基础01 单片机最小系统
单片机·嵌入式硬件·51单片机·硬件工程·信息与通信
追梦少年时12 小时前
STM32-Flash闪存
stm32·单片机·嵌入式硬件·51单片机