数字图像处理笔记(二)---- 像素加图像统计特征

系列文章目录


文章目录


前言

慕课视频地址


一、认识数字图像

图像分为模拟图像和数字图像。要想获得数字图像需要通过采样量化编码等过程。

量化和采样的过程是将模拟信号转化为数字信号。编码的过程主要是满足计算机对数字信号的存储传输显示等需要。

图像是将自然界中连续的信号转化为离散的一个一个点数据,也就是一个一个像素灰度值。

像素数值:0~255之间的整数。

计算机对数据的表示和存储是二进制,为了方便计算机存储显示和传输,每像素点的灰度值来转换成二进制数。常采用一个字节(8bit)的二进制位来表示每个像素的亮度值。

CT影像,12bit来编码。灰度值层次更丰富,对于不同组织之间的差异,显示精度更高。

像素是图像最基本的组成单元,默认像素中包含的信息是均匀一致的。

二、图像的数学描述

图像中像素包含两个信息:

  1. 个像素的信号强度
  2. 像素所在的空间位置

I(x,y)表示一个像素,I(x,y)的值就代表这个像素点上信号的强度,即灰度值。

考虑三维空间信息,考虑时间信息,考虑光谱维度。

图像的一般表达式:

入是光谱的波长,通常用于描述具有丰富光谱的图像比如遥感图像

静态平面图像 I=F(x,y)

像素

像素是一个逻辑概念,并没有实际的物理尺寸,只有对应到实际的硬件上。如手机屏幕,电视机,显示器的尺寸才能计算出每个像素的大小。同一个尺寸的手机屏幕,显示的像素个数越多,空间分辨率越高。每个像素的物理尺寸就会越小,所显示的细节就更丰富。

空间分辨率反应的是单位面积内像素的密度,分辨率越高,像素密度越大。

成像设备:

分辨率越高,代表采样像素越多,图像细节信息越丰富,但与此同时图像数据量就会增加。

二、图像的统计特征

图像是像素的集合,如果我们统计所有像素灰度值的平均值就可以获得图像的平均灰度。

图像的平均灰度反应了图像强度的平均水平。

还可以统计图像的方差,计算像素偏离平均灰度水平的一个大小,如果方差较大,说明图像中灰度变化很剧烈,如果方差太小,说明灰度变化平缓。

信息熵

每个像素灰度值反应信息的主要来源


总结





相关推荐
人工智能培训几秒前
10分钟了解向量数据库(4)
人工智能·机器学习·数据挖掘·深度学习入门·深度学习证书·ai培训证书·ai工程师证书
无忧智库7 分钟前
从“数据孤岛”到“城市大脑”:深度拆解某智慧城市“十五五”数字底座建设蓝图
人工智能·智慧城市
Rui_Freely9 分钟前
Vins-Fusion之 SFM准备篇(十二)
人工智能·算法·计算机视觉
hugerat11 分钟前
在AI的帮助下,用C++构造微型http server
linux·c++·人工智能·http·嵌入式·嵌入式linux
AI街潜水的八角18 分钟前
深度学习洪水分割系统2:含训练测试代码和数据集
人工智能·深度学习
万行21 分钟前
机器学习&第二章线性回归
人工智能·python·机器学习·线性回归
崎岖Qiu32 分钟前
【OS笔记35】:文件系统的使用、实现与管理
笔记·操作系统·存储管理·文件系统·os
小宇的天下35 分钟前
HBM(高带宽内存)深度解析:先进封装视角的技术指南
网络·人工智能
rongcj40 分钟前
2026,“硅基经济”的时代正在悄然来临
人工智能
狼叔也疯狂41 分钟前
英语启蒙SSS绘本第一辑50册高清PDF可打印
人工智能·全文检索