数字图像处理笔记(二)---- 像素加图像统计特征

系列文章目录


文章目录


前言

慕课视频地址


一、认识数字图像

图像分为模拟图像和数字图像。要想获得数字图像需要通过采样量化编码等过程。

量化和采样的过程是将模拟信号转化为数字信号。编码的过程主要是满足计算机对数字信号的存储传输显示等需要。

图像是将自然界中连续的信号转化为离散的一个一个点数据,也就是一个一个像素灰度值。

像素数值:0~255之间的整数。

计算机对数据的表示和存储是二进制,为了方便计算机存储显示和传输,每像素点的灰度值来转换成二进制数。常采用一个字节(8bit)的二进制位来表示每个像素的亮度值。

CT影像,12bit来编码。灰度值层次更丰富,对于不同组织之间的差异,显示精度更高。

像素是图像最基本的组成单元,默认像素中包含的信息是均匀一致的。

二、图像的数学描述

图像中像素包含两个信息:

  1. 个像素的信号强度
  2. 像素所在的空间位置

I(x,y)表示一个像素,I(x,y)的值就代表这个像素点上信号的强度,即灰度值。

考虑三维空间信息,考虑时间信息,考虑光谱维度。

图像的一般表达式:

入是光谱的波长,通常用于描述具有丰富光谱的图像比如遥感图像

静态平面图像 I=F(x,y)

像素

像素是一个逻辑概念,并没有实际的物理尺寸,只有对应到实际的硬件上。如手机屏幕,电视机,显示器的尺寸才能计算出每个像素的大小。同一个尺寸的手机屏幕,显示的像素个数越多,空间分辨率越高。每个像素的物理尺寸就会越小,所显示的细节就更丰富。

空间分辨率反应的是单位面积内像素的密度,分辨率越高,像素密度越大。

成像设备:

分辨率越高,代表采样像素越多,图像细节信息越丰富,但与此同时图像数据量就会增加。

二、图像的统计特征

图像是像素的集合,如果我们统计所有像素灰度值的平均值就可以获得图像的平均灰度。

图像的平均灰度反应了图像强度的平均水平。

还可以统计图像的方差,计算像素偏离平均灰度水平的一个大小,如果方差较大,说明图像中灰度变化很剧烈,如果方差太小,说明灰度变化平缓。

信息熵

每个像素灰度值反应信息的主要来源


总结





相关推荐
极限实验室5 分钟前
INFINI Labs 产品更新 - Coco AI v0.10 × Easysearch v2.0 联袂上线:UI 全面重构,体验焕然一新
数据库·人工智能·产品
春日见1 小时前
眼在手上外参标定保姆级教学---离线手眼标定(vscode + opencv)
linux·运维·开发语言·人工智能·数码相机·计算机视觉·matlab
SmartBrain1 小时前
对比:Qwen-VL与传统的CNN在图像处理应用
图像处理·人工智能·cnn
宵时待雨1 小时前
C语言笔记归纳20:文件操作
c语言·开发语言·笔记·算法
全栈独立开发者3 小时前
架构师日记:当点餐系统遇上 AI —— 基于 Spring AI + Pgvector + DeepSeek 的架构设计思路
人工智能
谷歌开发者3 小时前
Web 开发指向标|开发者工具 AI 辅助功能的 5 大实践应用
前端·人工智能
kkai人工智能4 小时前
AI写作:从“废话”到“爆款”
开发语言·人工智能·ai·ai写作
xian_wwq8 小时前
【学习笔记】数据血缘
笔记·学习·数据血缘
づ安眠丶乐灬9 小时前
计算机视觉中的多视图几何 - 1
人工智能·vscode·计算机视觉