Tensor列表索引本质

张量列表索引本质
单列表索引

将原张量shape对应位置数字更改为索引列表的形状

python 复制代码
data = torch.randn((9, 512, 30))
index_list = [0, 1, 3]
print(data[:, index_list].shape)
'''
[[9, 3, 30]]
'''


# torch.Size([1, 6, 5])
index2_list = torch.IntTensor([[[4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8]]])
print(data[:, index2_list].shape)
# torch.Size([6, 1, 6, 5, 30])
多列表索引

双列表索引本质就是索引列表之间通过广播机制,达成一致。

python 复制代码
data = torch.randn((6, 512, 30))
# index1: torch.Size([1, 6, 5])
index1 = torch.IntTensor([[[4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8]]])

# index2: torch.Size([5])
index2 = torch.IntTensor([0, 1, 2, 3, 4])


# 双列表索引
print(data[index1, index2].size())
'''
torch.Size([1, 6, 5, 30])
'''

# 三列表索引
print(data[index1, index2, index1].size())
'''
torch.Size([1, 6, 5])
'''
列表索引本质

多列表是先广播。

如果是单列表:

  • 1\] 返回:\[data\[1\]

  • 1, 2, 3\], 返回:\[data\[1\], data\[2\], data\[3\]

  • \[1, 2, 3\]\],返回: \[ \[ data\[1\], data\[2\], data\[3\] \]

如果是双列表:

  • 1\], \[2\] : 返回:\[ data\[1, 2\]

  • \[1\]\], \[1, 2\] : 先广播:\[\[1, 1\]\], \[\[1, 2\]\] 重叠 \[\[(1,1), (1, 2)\]\] 返回: \[ \[ data\[1, 1\], data\[1,2\] \]

多列表以此类推。

相关推荐
若叶时代3 分钟前
数据分析_Python
人工智能·python·数据分析
虾球xz6 分钟前
游戏引擎学习第286天:开始解耦实体行为
c++·人工智能·学习·游戏引擎
武子康8 分钟前
大语言模型 11 - 从0开始训练GPT 0.25B参数量 MiniMind2 准备数据与训练模型 DPO直接偏好优化
人工智能·gpt·ai·语言模型·自然语言处理
羽凌寒1 小时前
图像对比度调整(局域拉普拉斯滤波)
人工智能·计算机视觉
大模型铲屎官1 小时前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典
一点.点1 小时前
计算机视觉的简单介绍
人工智能·深度学习·计算机视觉
量子-Alex1 小时前
【目标检测】【Transformer】Swin Transformer
人工智能·目标检测·transformer
GISer_Jing1 小时前
AI知识梳理——RAG、Agent、ReAct、LangChain、LangGraph、MCP、Function Calling、JSON-RPC
人工智能
Stara05112 小时前
基于多头自注意力机制(MHSA)增强的YOLOv11主干网络—面向高精度目标检测的结构创新与性能优化
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
YuSun_WK2 小时前
目标跟踪相关综述文章
人工智能·计算机视觉·目标跟踪