Tensor列表索引本质

张量列表索引本质
单列表索引

将原张量shape对应位置数字更改为索引列表的形状

python 复制代码
data = torch.randn((9, 512, 30))
index_list = [0, 1, 3]
print(data[:, index_list].shape)
'''
[[9, 3, 30]]
'''


# torch.Size([1, 6, 5])
index2_list = torch.IntTensor([[[4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8],
                               [4, 5, 6, 7, 8]]])
print(data[:, index2_list].shape)
# torch.Size([6, 1, 6, 5, 30])
多列表索引

双列表索引本质就是索引列表之间通过广播机制,达成一致。

python 复制代码
data = torch.randn((6, 512, 30))
# index1: torch.Size([1, 6, 5])
index1 = torch.IntTensor([[[4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8],
                           [4, 5, 6, 7, 8]]])

# index2: torch.Size([5])
index2 = torch.IntTensor([0, 1, 2, 3, 4])


# 双列表索引
print(data[index1, index2].size())
'''
torch.Size([1, 6, 5, 30])
'''

# 三列表索引
print(data[index1, index2, index1].size())
'''
torch.Size([1, 6, 5])
'''
列表索引本质

多列表是先广播。

如果是单列表:

  • 1\] 返回:\[data\[1\]

  • 1, 2, 3\], 返回:\[data\[1\], data\[2\], data\[3\]

  • \[1, 2, 3\]\],返回: \[ \[ data\[1\], data\[2\], data\[3\] \]

如果是双列表:

  • 1\], \[2\] : 返回:\[ data\[1, 2\]

  • \[1\]\], \[1, 2\] : 先广播:\[\[1, 1\]\], \[\[1, 2\]\] 重叠 \[\[(1,1), (1, 2)\]\] 返回: \[ \[ data\[1, 1\], data\[1,2\] \]

多列表以此类推。

相关推荐
迎仔44 分钟前
06-AI开发进阶
人工智能
陈天伟教授1 小时前
人工智能应用- 语言处理:01.机器翻译:人类语言的特点
人工智能·自然语言处理·机器翻译
Codebee1 小时前
OoderAgent 相比主流Agent框架的五大核心独特优势
人工智能
home_4981 小时前
与gemini关于神的对话
人工智能·科幻·神学
代码改善世界1 小时前
CANN深度解构:中国AI系统软件的原创性突破与架构创新
大数据·人工智能·架构
Fairy要carry1 小时前
面试-Torch函数
人工智能
aiguangyuan1 小时前
基于BERT的中文命名实体识别实战解析
人工智能·python·nlp
量子-Alex1 小时前
【大模型RLHF】Training language models to follow instructions with human feedback
人工智能·语言模型·自然语言处理
晚霞的不甘1 小时前
Flutter for OpenHarmony 实现计算几何:Graham Scan 凸包算法的可视化演示
人工智能·算法·flutter·架构·开源·音视频
陈天伟教授1 小时前
人工智能应用- 语言处理:04.统计机器翻译
人工智能·自然语言处理·机器翻译