自然语言处理之LSTM+CRF序列标注

前言

序列标注是对输入序列中的每个标记进行标注标签的过程,常用于信息抽取任务,如分词、词性标注和命名实体识别。其中,命名实体识别是其中的一种任务。

输入序列
输出标注 B I I I O O O O O B I

条件随机场

序列标注需要考虑相邻Token之间的关联关系,而条件随机场是一种适合解决这种问题的概率图模型。文章详细介绍了条件随机场的定义和参数化形式,以及计算输出序列概率的公式和发射概率函数、转移概率函数的定义。

Score计算

根据一个公式计算正确标签序列对应的得分,需要注意维护两个向量作为序列开始和结束时的转移概率,并引入一个掩码矩阵来忽略填充值,使得得分计算只包含有效的Token。

Normalizer计算

使用动态规划算法来计算Normalizer的方法,通过复用计算结果来提高效率。假设需要计算从第0至第𝑖个Token所有可能的输出序列得分Score𝑖,则可以先计算出从第0至第𝑖−1个Token所有可能的输出序列得分Score𝑖−1。

Viterbi算法

完成前向训练后,需要实现解码部分,选择Viterbi算法求解序列最优路径。通过动态规划求解所有可能的预测序列得分,并同时保存每个Token对应的最大概率得分和标签历史。根据Viterbi算法的公式,逆序求解每一个概率最大的标签,构成最佳的预测序列。由于静态图语法限制,Viterbi算法部分将作为后处理函数,不纳入后续CRF层的实现。

CRF层

关于如何组装完整的CRF(条件随机场)层的。在组装过程中需要考虑输入序列可能存在Padding的情况,因此除发射矩阵和标签外,加入了 seq_length 参数传入序列Padding前的长度,并实现了生成mask矩阵的 sequence_mask 方法。最后使用 nn.Cell 进行封装,实现完整的CRF层。

总结

主要介绍使用MindSpore实现序列标注任务的条件随机场(CRF)模型。从公式推导到具体代码实现,详细介绍了CRF层的前向训练部分、动态规划求解Normalizer、Viterbi算法寻找最优路径等关键步骤。最后构建了一个BiLSTM+CRF模型进行命名实体识别任务的训练和预测,并展示了训练及预测结果。

相关推荐
富唯智能20 分钟前
移动+协作+视觉:开箱即用的下一代复合机器人如何重塑智能工厂
人工智能·工业机器人·复合机器人
Antonio9151 小时前
【图像处理】图像的基础几何变换
图像处理·人工智能·计算机视觉
新加坡内哥谈技术2 小时前
Perplexity AI 的 RAG 架构全解析:幕后技术详解
人工智能
武子康2 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
Sirius Wu3 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
忙碌5444 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running4 小时前
智能变电巡检:AI检测新突破
人工智能
InfiSight智睿视界4 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔5 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起5 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer