自然语言处理之LSTM+CRF序列标注

前言

序列标注是对输入序列中的每个标记进行标注标签的过程,常用于信息抽取任务,如分词、词性标注和命名实体识别。其中,命名实体识别是其中的一种任务。

输入序列
输出标注 B I I I O O O O O B I

条件随机场

序列标注需要考虑相邻Token之间的关联关系,而条件随机场是一种适合解决这种问题的概率图模型。文章详细介绍了条件随机场的定义和参数化形式,以及计算输出序列概率的公式和发射概率函数、转移概率函数的定义。

Score计算

根据一个公式计算正确标签序列对应的得分,需要注意维护两个向量作为序列开始和结束时的转移概率,并引入一个掩码矩阵来忽略填充值,使得得分计算只包含有效的Token。

Normalizer计算

使用动态规划算法来计算Normalizer的方法,通过复用计算结果来提高效率。假设需要计算从第0至第𝑖个Token所有可能的输出序列得分Score𝑖,则可以先计算出从第0至第𝑖−1个Token所有可能的输出序列得分Score𝑖−1。

Viterbi算法

完成前向训练后,需要实现解码部分,选择Viterbi算法求解序列最优路径。通过动态规划求解所有可能的预测序列得分,并同时保存每个Token对应的最大概率得分和标签历史。根据Viterbi算法的公式,逆序求解每一个概率最大的标签,构成最佳的预测序列。由于静态图语法限制,Viterbi算法部分将作为后处理函数,不纳入后续CRF层的实现。

CRF层

关于如何组装完整的CRF(条件随机场)层的。在组装过程中需要考虑输入序列可能存在Padding的情况,因此除发射矩阵和标签外,加入了 seq_length 参数传入序列Padding前的长度,并实现了生成mask矩阵的 sequence_mask 方法。最后使用 nn.Cell 进行封装,实现完整的CRF层。

总结

主要介绍使用MindSpore实现序列标注任务的条件随机场(CRF)模型。从公式推导到具体代码实现,详细介绍了CRF层的前向训练部分、动态规划求解Normalizer、Viterbi算法寻找最优路径等关键步骤。最后构建了一个BiLSTM+CRF模型进行命名实体识别任务的训练和预测,并展示了训练及预测结果。

相关推荐
2501_9418372619 分钟前
多颜色玫瑰品种识别与分类_YOLO13-C3k2-PoolingFormer模型详解_1
人工智能·数据挖掘
新缸中之脑41 分钟前
为什么我选 Codex
人工智能
yumgpkpm43 分钟前
2026软件:白嫖,开源,外包,招标,晚进场(2025年下半年),数科,AI...中国的企业软件产业出路
大数据·人工智能·hadoop·算法·kafka·开源·cloudera
witAI1 小时前
**AI漫剧制作工具2025推荐,零成本实现专业级动画创作*
人工智能·python
冬奇Lab1 小时前
一天一个开源项目(第12篇):SoulX-Podcast - 多轮对话式播客生成,让AI语音更自然真实
人工智能·开源
风栖柳白杨1 小时前
【语音识别】一些音频的使用方法
人工智能·音视频·语音识别
xixixi777771 小时前
今日 AI 、通信、安全行业前沿日报(2026 年 2 月 4 日,星期三)
大数据·人工智能·安全·ai·大模型·通信·卫星通信
LucDelton1 小时前
模型微调思路
人工智能·深度学习·机器学习
寻道码路1 小时前
【GitHub开源AI精选】WhisperX:70倍实时语音转录、革命性词级时间戳与多说话人分离技术
人工智能·开源·github
小王不爱笑1321 小时前
LangChain4J 整合多 AI 模型核心实现步骤
java·人工智能·spring boot