自然语言处理之LSTM+CRF序列标注

前言

序列标注是对输入序列中的每个标记进行标注标签的过程,常用于信息抽取任务,如分词、词性标注和命名实体识别。其中,命名实体识别是其中的一种任务。

输入序列
输出标注 B I I I O O O O O B I

条件随机场

序列标注需要考虑相邻Token之间的关联关系,而条件随机场是一种适合解决这种问题的概率图模型。文章详细介绍了条件随机场的定义和参数化形式,以及计算输出序列概率的公式和发射概率函数、转移概率函数的定义。

Score计算

根据一个公式计算正确标签序列对应的得分,需要注意维护两个向量作为序列开始和结束时的转移概率,并引入一个掩码矩阵来忽略填充值,使得得分计算只包含有效的Token。

Normalizer计算

使用动态规划算法来计算Normalizer的方法,通过复用计算结果来提高效率。假设需要计算从第0至第𝑖个Token所有可能的输出序列得分Score𝑖,则可以先计算出从第0至第𝑖−1个Token所有可能的输出序列得分Score𝑖−1。

Viterbi算法

完成前向训练后,需要实现解码部分,选择Viterbi算法求解序列最优路径。通过动态规划求解所有可能的预测序列得分,并同时保存每个Token对应的最大概率得分和标签历史。根据Viterbi算法的公式,逆序求解每一个概率最大的标签,构成最佳的预测序列。由于静态图语法限制,Viterbi算法部分将作为后处理函数,不纳入后续CRF层的实现。

CRF层

关于如何组装完整的CRF(条件随机场)层的。在组装过程中需要考虑输入序列可能存在Padding的情况,因此除发射矩阵和标签外,加入了 seq_length 参数传入序列Padding前的长度,并实现了生成mask矩阵的 sequence_mask 方法。最后使用 nn.Cell 进行封装,实现完整的CRF层。

总结

主要介绍使用MindSpore实现序列标注任务的条件随机场(CRF)模型。从公式推导到具体代码实现,详细介绍了CRF层的前向训练部分、动态规划求解Normalizer、Viterbi算法寻找最优路径等关键步骤。最后构建了一个BiLSTM+CRF模型进行命名实体识别任务的训练和预测,并展示了训练及预测结果。

相关推荐
CareyWYR3 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信5 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20095 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟5 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播5 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训5 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹6 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55186 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora6 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大6 小时前
关于前馈神经网络
人工智能·深度学习·神经网络