自然语言处理之LSTM+CRF序列标注

前言

序列标注是对输入序列中的每个标记进行标注标签的过程,常用于信息抽取任务,如分词、词性标注和命名实体识别。其中,命名实体识别是其中的一种任务。

输入序列
输出标注 B I I I O O O O O B I

条件随机场

序列标注需要考虑相邻Token之间的关联关系,而条件随机场是一种适合解决这种问题的概率图模型。文章详细介绍了条件随机场的定义和参数化形式,以及计算输出序列概率的公式和发射概率函数、转移概率函数的定义。

Score计算

根据一个公式计算正确标签序列对应的得分,需要注意维护两个向量作为序列开始和结束时的转移概率,并引入一个掩码矩阵来忽略填充值,使得得分计算只包含有效的Token。

Normalizer计算

使用动态规划算法来计算Normalizer的方法,通过复用计算结果来提高效率。假设需要计算从第0至第𝑖个Token所有可能的输出序列得分Score𝑖,则可以先计算出从第0至第𝑖−1个Token所有可能的输出序列得分Score𝑖−1。

Viterbi算法

完成前向训练后,需要实现解码部分,选择Viterbi算法求解序列最优路径。通过动态规划求解所有可能的预测序列得分,并同时保存每个Token对应的最大概率得分和标签历史。根据Viterbi算法的公式,逆序求解每一个概率最大的标签,构成最佳的预测序列。由于静态图语法限制,Viterbi算法部分将作为后处理函数,不纳入后续CRF层的实现。

CRF层

关于如何组装完整的CRF(条件随机场)层的。在组装过程中需要考虑输入序列可能存在Padding的情况,因此除发射矩阵和标签外,加入了 seq_length 参数传入序列Padding前的长度,并实现了生成mask矩阵的 sequence_mask 方法。最后使用 nn.Cell 进行封装,实现完整的CRF层。

总结

主要介绍使用MindSpore实现序列标注任务的条件随机场(CRF)模型。从公式推导到具体代码实现,详细介绍了CRF层的前向训练部分、动态规划求解Normalizer、Viterbi算法寻找最优路径等关键步骤。最后构建了一个BiLSTM+CRF模型进行命名实体识别任务的训练和预测,并展示了训练及预测结果。

相关推荐
cooldream20097 分钟前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer5 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic5 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天6 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU6 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec6 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz6 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉