新手小白的pytorch学习第七弹------分类问题模型

目录

用 pytorch 使用神经网络进行分类

  1. 二分类问题:比如说收到一个邮件,判断这个邮件是不是垃圾邮件,那么这里就是二分类,是或者不是
  2. 多类分类问题:比如说我给你一张图片,你判断它是蛋糕、牛排或者寿司
  3. 多标签分类问题:它的目标不止一个选项,比如一个文件的标签可以是数学、科学、哲学等等,意味着它的标签有多个

分类问题就是给一些输入然后预测这类别属于哪个类

我们接下来要做的事情:

  1. 准备好二分类数据
  2. 创建pytorch分类模型
  3. 训练模型
  4. 预测并评估
  5. 提升模型性能
  6. 非线性
  7. 复制非线性函数
  8. 全部整合在一起

今天我们就暂时先搞两个

  1. 准备好二分类数据
  2. 创建pytorch分类模型

1. 准备分类数据

这里我们使用的是Scikit-Learn里面的make_circles()方法,生成两个不同颜色的圆圈

python 复制代码
# 制作数据
from sklearn.datasets import make_circles

# 创建1000个样本
n_samples = 1000

# 创建我们的圆圈样本
X, y = make_circles(n_samples,
                    noise=0.03, # 每个点的噪声
                    random_state=42) # 保证我们获得相同的值

报错了,没有sklearn模块

python 复制代码
pip install scikit-learn

ok,咱们安装一下应该就没有问题啦!

现在让我们来看看Xy的前五个值

python 复制代码
print(f"First 5 X features:\n{X[:5]}")
print(f"first 5 y features:\n{y[:5]}")

First 5 X features:

[[ 0.75424625 0.23148074]

[-0.75615888 0.15325888]

[-0.81539193 0.17328203]

[-0.39373073 0.69288277]

[ 0.44220765 -0.89672343]]

first 5 y features:

[1 1 1 1 0]

这里我们可以看出,它是两个X对应一个y值

接下来让我们可视化一下,这样有助于我们更好的理解数据

python 复制代码
# 将我们的圆圈数据转换为 DataFrame 格式的
import pandas as pd
circles = pd.DataFrame({"X1":X[:,0],
                        "X2":X[:,1],
                        "label":y
                    })
circles.head(10)

报错:没有pandas模块

没事哒~没事哒,我们安装一下就可以啦!

python 复制代码
pip install pandas

接着再运行代码就出现下面这个结果啦。

从上面展示的数据,咱们可以看出它是一个二分类问题,因为y值只有0或1的选项,所以让我们接着看一下每一个类别有多少数据呢

python 复制代码
circles.label.value_counts()

label

1 500

0 500

Name: count, dtype: int64

绘制数据circle的图像

python 复制代码
import matplotlib.pyplot as plt
plt.scatter(x=X[:,0],
            y=X[:,1],
            c=y,
            cmap=plt.cm.RdYlBu)

接下来看我们怎样创建一个模型,它能够很好的将点分为 0(red), 1(blue)

1.1 输入和输出的形状 shape

python 复制代码
# 首先,查看我们输入和输出数据的 shape
X.shape, y.shape

((1000, 2), (1000,))

python 复制代码
# 让我们看一下第一个数据
X_sample = X[0]
y_sample = y[0]
print(f"第一个数据的X值:{X_sample},第一个数据的y值:{y_sample}")
print(f"第一个数据的shape值: X_sample shape{X_sample.shape}, y_sample shape{y_sample.shape}")

第一个数据的X值:[0.75424625 0.23148074],第一个数据的y值:1

第一个数据的shape值: X_sample shape(2,), y_sample shape()

这个结果告诉我们一个X特征是由两个值组成的向量,而y他就是一个值的标量,即我们有两个输入一个输出

1.2 将数据转换为张量,同时将我们的数据集转换为训练集和测试集

python 复制代码
# 将数据转换为张量,并将数据转换为默认数据格式
import torch
X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.float)

# 查看一下前五个样本
X[:5],y[:5]

(tensor([[ 0.7542, 0.2315],

[-0.7562, 0.1533],

[-0.8154, 0.1733],

[-0.3937, 0.6929],

[ 0.4422, -0.8967]]),

tensor([1., 1., 1., 1., 0.]))

这里我们划分训练集和测试集不是使用原来那个切分了,使用的是Scikit-Learn中的train_test_split()方法

python 复制代码
# 划分数据为训练集和测试集
from sklearn.model_selection import train_test_split

# test_size=0.2 是说测试数据占数据的20%,因为这个方法是随机划分的,因此我们这里设置了random_state=42,这样就有助于我们复现代码
X_train, X_test, y_train, y_test = train_test_split(X,
                                                    y, 
                                                    test_size=0.2,
                                                    random_state=42)
len(X_train), len(y_train), len(X_test), len(y_test)

(800, 800, 200, 200)

这个数据就对啦,之前我们不是1000条数据嘛,训练集占80%,测试集占20%,这个数据划分非常之合理和正确。

2 创建模型

准备好数据,我们就可以创建我们的模型啦!

我们将创建模型也划分几个步骤,这样思路能够更加清晰一些:

1.设备无关的代码

2.创建一个模型(nn.Module的子类)

3.定义损失函数和优化器

4.创建训练循环(下个文档学习昂,别着急)

准备好了吗?Let's start right now!

python 复制代码
import torch.nn as nn

device = "cuda" if torch.cuda.is_available() else "cpu"
device

'cuda'

方法一:自定义+forward()

python 复制代码
# 创建模型类,并且是 nn.Module 的子类
class CircleClassificationV0(nn.Module):
    def __init__(self):
        super().__init__()
        # 创建两个线性层
        self.liear1 = nn.Linear(in_features=2, out_features=5)
        self.liear2 = nn.Linear(in_features=5, out_features=1)
        
    def forward(self, x):
        return self.liear2(self.liear1(x))

这里有一个点就是要搞清楚这个输入和输出特征的值,即 in_features 和 out_features,之前我们讨论过输入X是2,输出y是1,所以不难理解linear1的in_features=2, 和linear2的out_features=1,注意linear1的out_features和linear2的in_features一定是一样的,因为linear1的out_features是linear2的输入 ,这个值是自己定的,这里选择5是因为方便我们观察数据,并了解里面的原理。

python 复制代码
# 实例化模型,并把它送到目标设备上
model_0 = CircleClassificationV0().to(device)
model_0

CircleClassificationV0(

(liear1): Linear(in_features=2, out_features=5, bias=True)

(liear2): Linear(in_features=5, out_features=1, bias=True)

)

这里还有一个方法,nn.Sequential()构建模型,看起来代码更加简洁

方法二:nn.Sequential()

python 复制代码
# 使用 nn.Sequential() 构建模型
model_0 = nn.Sequential(
    nn.Linear(in_features=1, out_features=5),
    nn.Linear(in_features=5, out_features=1)
).to(device)
model_0

Sequential(

(0): Linear(in_features=1, out_features=5, bias=True)

(1): Linear(in_features=5, out_features=1, bias=True)

)

这段代码会重写上面的代码,同时注意这里nn.Sequential()里面的方法都是顺序执行的,并且我们不需要写forward()方法,下面还有一种两个方法结合的,可以看看。

方法三:自定义+forward()+nn.Sequential()

python 复制代码
class CircleClassificationV1(nn.Module):
    def __init__(self):
        super().__init__()
        
        self.linear = nn.Sequential(
            nn.Linear(in_features=2, out_features=5),
            nn.Linear(in_features=5, out_features=1)
        )
        
    def forward(self, x):
        return self.linear(x)
    
model_0 = CircleClassificationV1().to(device)
model_0

CircleClassificationV1(

(linear): Sequential(

(0): Linear(in_features=2, out_features=5, bias=True)

(1): Linear(in_features=5, out_features=1, bias=True)

)

)

这种结合两种方法的都可以使用,按照需求自己选择吧,这里我们还是采用第一种哈,再运行一遍之前的代码就可以啦,这里就不复制粘贴啦。

ok,现在我们有一个模型了,让我们看看当我们传递数据给它会发生什么

python 复制代码
# 使用模型进行预测
untrained_preds = model_0(X_test.to(device))
print(f"Length of predictions:{len(untrained_preds)},shape:{untrained_preds.shape}")
print(f"Length of test samples:{len(y_test)}, shape:{y_test.shape}")
print(f"\nFirst 10 predictions:\n{untrained_preds[:10]}")
print(f"\nFirst 10 test labels:\n{y[:10]}")

Length of predictions:200,shape:torch.Size([200, 1])

Length of test samples:200, shape:torch.Size([200])
First 10 predictions:

tensor([[0.8031],

[0.8345],

[0.6306],

[0.8524],

[0.4873],

[0.5075],

[0.7094],

[0.6325],

[0.6370],

[0.8350]], device='cuda:0', grad_fn=)
First 10 test labels:

tensor([1., 1., 1., 1., 0., 1., 1., 1., 1., 0.])

ok, 昨天就学到这里了,今天把昨天欠的账终于还了,长舒一口气
BB ,我跟你说,昨天吃的绿豆饼尊嘟超级好吃,今天早上的粉丝包没有昨天的好吃,干巴得很。我棒不棒 ,我把目录 加上了,上次说要加,这次马上就加了。
BB ,如果我的文档对您有用得话,记得给俺点个赞赞

靴靴,谢谢啦~

相关推荐
VertexGeek几秒前
Rust学习(八):异常处理和宏编程:
学习·算法·rust
湫ccc7 分钟前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤10 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
羊小猪~~13 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
Sxiaocai14 分钟前
使用TensorFlow实现简化版 GoogLeNet 模型进行 MNIST 图像分类
分类·tensorflow·neo4j
lzhlizihang15 分钟前
python如何使用spark操作hive
hive·python·spark
q0_0p17 分钟前
牛客小白月赛105 (Python题解) A~E
python·牛客
极客代码20 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng113320 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike21 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习