【知识】PyTorch种两种CUDA时间测量的方法对比

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~

在PyTorch中使用CUDA进行时间测量时,以下两者各有优缺点:

  • torch.cuda.current_stream(self._device).synchronize()
  • torch.cuda.Event(enable_timing=True)

torch.cuda.current_stream(self._device).synchronize()

  1. 功能torch.cuda.current_stream(self._device).synchronize() 会同步当前设备的CUDA流,确保之前的所有操作都完成。这可以用来在开始和结束计时前确保所有前面的CUDA操作都完成。
  2. 效率:这种方法一般来说开销较大,因为它会同步整个流,导致所有未完成的CUDA操作都必须等待完成。
  3. 使用场景:适用于需要确保所有CUDA操作完成的场景,但通常不适用于精确的计时测量。
python 复制代码
import torch
import time

# 确保所有之前的操作完成
torch.cuda.current_stream().synchronize()

start_time = time.time()

# 执行一些CUDA操作
# ...

# 再次同步
torch.cuda.current_stream().synchronize()

end_time = time.time()
print(f"Elapsed time: {end_time - start_time} seconds")

torch.cuda.Event(enable_timing=True)

  1. 功能 :通过CUDA事件来进行计时,torch.cuda.Event(enable_timing=True) 创建一个启用了计时的事件,可以用event.record()方法在代码中的特定位置记录时间戳,然后通过计算开始和结束事件之间的时间差来测量操作时间。
  2. 效率:这种方法通常更高效,因为它允许异步记录事件时间,并且只会同步特定的事件,而不是整个流。通常开销较小,适合精确的时间测量。
  3. 使用场景:适用于需要精确测量特定CUDA操作执行时间的场景,例如分析和优化代码性能。
python 复制代码
import torch

start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)

start_event.record()

# 执行一些CUDA操作
# ...

end_event.record()

# 同步并计算时间
torch.cuda.synchronize()
elapsed_time = start_event.elapsed_time(end_event)
print(f"Elapsed time: {elapsed_time} milliseconds")
相关推荐
AI手记叨叨23 分钟前
Python数学:几何运算
python·数学·解析几何·射影几何·微分几何·欧几里得几何
童话名剑34 分钟前
三个经典卷积网络 + 1×1卷积(吴恩达深度学习笔记)
深度学习·神经网络·cnn·alexnet·lenet-5·vgg·1×1卷积
njsgcs35 分钟前
用modelscope运行grounding dino
人工智能·pytorch·深度学习·modelscope·groundingdino
toolhow42 分钟前
SelfAttenion自注意力机制
pytorch·python·深度学习
智航GIS42 分钟前
6.2 while循环
java·前端·python
qq_3363139344 分钟前
java基础-IO流(转换流)
java·开发语言·python
哥布林学者1 小时前
吴恩达深度学习课程四:计算机视觉 第四周:卷积网络应用 课后习题和代码实践
深度学习·ai
Stestack1 小时前
ssh批量机器免密操作
linux·python·ssh
学习3人组1 小时前
主流深度学习目标检测模型性能对比表
人工智能·深度学习·目标检测
a程序小傲1 小时前
得物Java面试被问:反射机制的原理和应用场景
java·python·面试