【知识】PyTorch种两种CUDA时间测量的方法对比

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~

在PyTorch中使用CUDA进行时间测量时,以下两者各有优缺点:

  • torch.cuda.current_stream(self._device).synchronize()
  • torch.cuda.Event(enable_timing=True)

torch.cuda.current_stream(self._device).synchronize()

  1. 功能torch.cuda.current_stream(self._device).synchronize() 会同步当前设备的CUDA流,确保之前的所有操作都完成。这可以用来在开始和结束计时前确保所有前面的CUDA操作都完成。
  2. 效率:这种方法一般来说开销较大,因为它会同步整个流,导致所有未完成的CUDA操作都必须等待完成。
  3. 使用场景:适用于需要确保所有CUDA操作完成的场景,但通常不适用于精确的计时测量。
python 复制代码
import torch
import time

# 确保所有之前的操作完成
torch.cuda.current_stream().synchronize()

start_time = time.time()

# 执行一些CUDA操作
# ...

# 再次同步
torch.cuda.current_stream().synchronize()

end_time = time.time()
print(f"Elapsed time: {end_time - start_time} seconds")

torch.cuda.Event(enable_timing=True)

  1. 功能 :通过CUDA事件来进行计时,torch.cuda.Event(enable_timing=True) 创建一个启用了计时的事件,可以用event.record()方法在代码中的特定位置记录时间戳,然后通过计算开始和结束事件之间的时间差来测量操作时间。
  2. 效率:这种方法通常更高效,因为它允许异步记录事件时间,并且只会同步特定的事件,而不是整个流。通常开销较小,适合精确的时间测量。
  3. 使用场景:适用于需要精确测量特定CUDA操作执行时间的场景,例如分析和优化代码性能。
python 复制代码
import torch

start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)

start_event.record()

# 执行一些CUDA操作
# ...

end_event.record()

# 同步并计算时间
torch.cuda.synchronize()
elapsed_time = start_event.elapsed_time(end_event)
print(f"Elapsed time: {elapsed_time} milliseconds")
相关推荐
神的泪水8 小时前
CANN 生态实战:`msprof-performance-analyzer` 如何精准定位 AI 应用性能瓶颈
人工智能
芷栀夏8 小时前
深度解析 CANN 异构计算架构:基于 ACL API 的算子调用实战
运维·人工智能·开源·cann
威迪斯特8 小时前
项目解决方案:医药生产车间AI识别建设解决方案
人工智能·ai实时识别·视频实时识别·识别盒子·识别数据分析·项目解决方案
笔画人生8 小时前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
亓才孓8 小时前
[Class类的应用]反射的理解
开发语言·python
feasibility.8 小时前
AI 编程助手进阶指南:从 Claude Code 到 OpenCode 的工程化经验总结
人工智能·经验分享·设计模式·自动化·agi·skills·opencode
程序猿追8 小时前
深度剖析 CANN ops-nn 算子库:架构设计、演进与代码实现逻辑
人工智能·架构
灰灰勇闯IT8 小时前
领域制胜——CANN 领域加速库(ascend-transformer-boost)的场景化优化
人工智能·深度学习·transformer
灰灰勇闯IT8 小时前
从零到一——CANN 社区与 cann-recipes-infer 实践样例的启示
人工智能
小白狮ww8 小时前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek