【知识】PyTorch种两种CUDA时间测量的方法对比

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~

在PyTorch中使用CUDA进行时间测量时,以下两者各有优缺点:

  • torch.cuda.current_stream(self._device).synchronize()
  • torch.cuda.Event(enable_timing=True)

torch.cuda.current_stream(self._device).synchronize()

  1. 功能torch.cuda.current_stream(self._device).synchronize() 会同步当前设备的CUDA流,确保之前的所有操作都完成。这可以用来在开始和结束计时前确保所有前面的CUDA操作都完成。
  2. 效率:这种方法一般来说开销较大,因为它会同步整个流,导致所有未完成的CUDA操作都必须等待完成。
  3. 使用场景:适用于需要确保所有CUDA操作完成的场景,但通常不适用于精确的计时测量。
python 复制代码
import torch
import time

# 确保所有之前的操作完成
torch.cuda.current_stream().synchronize()

start_time = time.time()

# 执行一些CUDA操作
# ...

# 再次同步
torch.cuda.current_stream().synchronize()

end_time = time.time()
print(f"Elapsed time: {end_time - start_time} seconds")

torch.cuda.Event(enable_timing=True)

  1. 功能 :通过CUDA事件来进行计时,torch.cuda.Event(enable_timing=True) 创建一个启用了计时的事件,可以用event.record()方法在代码中的特定位置记录时间戳,然后通过计算开始和结束事件之间的时间差来测量操作时间。
  2. 效率:这种方法通常更高效,因为它允许异步记录事件时间,并且只会同步特定的事件,而不是整个流。通常开销较小,适合精确的时间测量。
  3. 使用场景:适用于需要精确测量特定CUDA操作执行时间的场景,例如分析和优化代码性能。
python 复制代码
import torch

start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)

start_event.record()

# 执行一些CUDA操作
# ...

end_event.record()

# 同步并计算时间
torch.cuda.synchronize()
elapsed_time = start_event.elapsed_time(end_event)
print(f"Elapsed time: {elapsed_time} milliseconds")
相关推荐
wyw00005 分钟前
目标检测之YOLO
人工智能·yolo·目标检测
发哥来了5 分钟前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
文言一心7 分钟前
LINUX离线升级 Python 至 3.11.9 操作手册
linux·运维·python
_codemonster10 分钟前
强化学习入门到实战系列(四)马尔科夫决策过程
人工智能
北邮刘老师15 分钟前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
laplace012324 分钟前
第七章 构建自己的agent智能体框架
网络·人工智能·microsoft·agent
诗词在线28 分钟前
中国古代诗词名句按主题分类有哪些?(爱国 / 思乡 / 送别)
人工智能·python·分类·数据挖掘
高锰酸钾_38 分钟前
机器学习-L1正则化和L2正则化解决过拟合问题
人工智能·python·机器学习
${王小剑}41 分钟前
深度学习损失函数
人工智能·深度学习
啊巴矲43 分钟前
小白从零开始勇闯人工智能:机器学习初级篇(PCA数据降维)
人工智能·机器学习