cnn-resnet实现代码

常用resnet实现

python 复制代码
import torch.nn as nn
import torch
 
class BasicBlock(nn.Module):
    # for ResNet-18/34
    expansion = 1
    
    def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__()
        # Conv(without bias)->BN->ReLU
        self.conv1 = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample
 
    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)
        
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        
        out = self.conv2(out)
        out = self.bn2(out)
        out += identity
        out = self.relu(out)
 
        return out
    
class Bottleneck(nn.Module):
    expansion = 4
    def __init__(self, in_channel, out_channel, stride=1, downsample=None, groups=1, width_pre_group=64):
        super(Bottleneck, self).__init__()
 
        width = int(out_channel * (width_pre_group/64.)) * groups
 
        self.conv1 = nn.Conv2d(in_channel, width, kernel_size=1, stride=1, bias=False)
        self.bn1 = nn.BatchNorm2d(width)
        
        self.conv2 = nn.Conv2d(width, width, groups=groups, kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
 
        self.conv3 = nn.Conv2d(width, out_channel*self.expansion, kernel_size=1, stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
 
    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)
        
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
 
        out = self.conv3(out)
        out = self.bn3(out)
        out += identity
        out = self.relu(out)
 
        return out
 
class ResNet(nn.Module):
    def __init__(self, block, blocks_num, num_classes=1000, include_top=True, groups=1, width_per_group=64):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64
 
        self.groups = groups
        self.width_per_group = width_per_group
 
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)
 
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
 
    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion: # 如果要进行下采样
            # 构造下采样层 (虚线的identity)
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion)
            )
        
        layers = []
        # 构建第一个Block(只有第一个Block会进行下采样)
        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride, groups=self.groups, width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion
 
        # 根据Block个数构建其他Block
        for _ in range(1, block_num):
            layers.append(block(self.in_channel, channel, groups=self.groups, width_per_group=self.width_per_group))
        
        return nn.Sequential(*layers)
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
 
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
 
        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
        
        return x
 
def resnet18(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, include_top=include_top)
 
def resnet34(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
 
def resnet50(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
 
def resnet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)
 
def resnet152(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, include_top=include_top)
 
def resnet50_32x4d(num_classes=1000, include_top=True):
    groups = 32
    width_per_group = 4
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top, groups=groups, width_per_group=width_per_group)
 
def resnet101_32x8d(num_classes=1000, include_top=True):
    groups = 32
    width_per_group = 8
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top, groups=groups, width_per_group=width_per_group)
相关推荐
ahead~1 小时前
【大模型入门】访问GPT_API实战案例
人工智能·python·gpt·大语言模型llm
我爱一条柴ya1 小时前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
慕婉03072 小时前
深度学习概述
人工智能·深度学习
大模型真好玩2 小时前
准确率飙升!GraphRAG如何利用知识图谱提升RAG答案质量(额外篇)——大规模文本数据下GraphRAG实战
人工智能·python·mcp
19892 小时前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
applebomb2 小时前
没合适的组合wheel包,就自行编译flash_attn吧
python·ubuntu·attention·flash
神经星星2 小时前
新加坡国立大学基于多维度EHR数据实现细粒度患者队列建模,住院时间预测准确率提升16.3%
人工智能·深度学习·机器学习
TY-20252 小时前
深度学习——神经网络1
人工智能·深度学习·神经网络
Chasing__Dreams2 小时前
python--杂识--18.1--pandas数据插入sqlite并进行查询
python·sqlite·pandas
cver1233 小时前
CSGO 训练数据集介绍-2,427 张图片 AI 游戏助手 游戏数据分析
人工智能·深度学习·yolo·目标检测·游戏·计算机视觉