运行 python程序的时候 就可以有创建了一个简单的升级动画,显示用户的当前等级,并在升级时更新显示_python

import nltk

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from flask import Flask, render_template, jsonify

import json

初始化nltk

nltk.download('punkt')

nltk.download('stopwords')

nltk.download('wordnet')

初始化分类器和评分模型

classifier = None

scorer = None

初始化分类和评分标准

categories = ['工作', '生活']

score_criteria = {

'工作': {

'完成任务': 10,

'解决问题': 5,

'其他': 1

},

'生活': {

'锻炼': 5,

'学习': 3,

'其他': 1

}

}

初始化基础分数和等级

base_score = 0

level = '初级'

初始化日志文件和评分记录

daily_log = []

scores = []

初始化TF-IDF向量化器

vectorizer = TfidfVectorizer()

初始化词形还原器

lemmatizer = WordNetLemmatizer()

训练分类器

def train_classifier():

global classifier

读取训练数据

training_data = []

training_labels = []

for category in categories:

with open(f'{category}_log.txt', 'r') as file:

activities = file.readlines()

training_data.extend(activities)

training_labels.extend([category] * len(activities))

数据预处理

processed_data = preprocess_text(training_data)

特征提取

features = vectorizer.fit_transform(processed_data).toarray()

训练分类器

classifier = MultinomialNB()

classifier.fit(features, training_labels)

训练评分模型

def train_scorer():

global scorer

读取训练数据

training_data = []

training_scores = []

for category in categories:

with open(f'{category}_log.txt', 'r') as file:

activities = file.readlines()

for activity in activities:

training_data.append(activity)

training_scores.append(score_activity(activity, category))

数据预处理

processed_data = preprocess_text(training_data)

特征提取

features = vectorizer.fit_transform(processed_data).toarray()

训练评分模型

scorer = MultinomialNB()

scorer.fit(features, training_scores)

预处理文本数据

def preprocess_text(data):

processed_data = []

for text in data:

分词

tokens = word_tokenize(text.lower())

去除停用词和标点符号

stop_words = set(stopwords.words('english'))

filtered_tokens = [token for token in tokens if token.isalnum() and token not in stop_words]

词形还原

lemmatized_tokens = [lemmatizer.lemmatize(token) for token in filtered_tokens]

重新组合为文本

processed_text = ' '.join(lemmatized_tokens)

processed_data.append(processed_text)

return processed_data

智能分类工作日常

def classify_activity(activity):

processed_activity = preprocess_text([activity])

features = vectorizer.transform(processed_activity).toarray()

category = classifier.predict(features)[0]

return category

根据分类和评分标准计算活动得分

def score_activity(activity, category):

score = 0

for word, points in score_criteria[category].items():

if word in activity:

score += points

return score

记录每天的工作日常

def log_daily_activity(activity):

global base_score, level

智能分类

category = classify_activity(activity)

计算得分

score = score_activity(activity, category)

更新基础分数和等级

base_score += score

if base_score >= 100:

level = '高级'

elif base_score >= 50:

level = '中级'

记录日志

daily_log.append((activity, category, score))

更新评分记录

scores.append(score)

创建Flask应用

app = Flask(name)

@app.route('/')

def index():

return render_template('index.html')

@app.route('/simulate')

def simulate():

global base_score, level

模拟每天的活动记录

activities = [

'完成工作任务',

'锻炼身体',

'解决问题',

'学习新知识',

'其他活动'

]

for activity in activities:

log_daily_activity(activity)

返回当前分数和等级

return jsonify({'base_score': base_score, 'level': level})

if name == 'main':

训练分类器和评分模型

train_classifier()

train_scorer()

启动Flask应用

app.run(debug=True)

相关推荐
zandy101131 分钟前
当BI遇见AI Agent:衡石科技如何重塑企业数据分析工作流
人工智能·科技·数据分析·ai agent·data agent
草莓熊Lotso34 分钟前
C++11 核心特性实战:列表初始化 + 右值引用与移动语义(附完整代码)
java·服务器·开发语言·汇编·c++·人工智能·经验分享
初夏睡觉1 小时前
从0开始c++,但是重置版,第1篇(c++基本框架)
开发语言·c++
渡我白衣1 小时前
AI应用层革命(七)——智能体的终极形态:认知循环体的诞生
人工智能·深度学习·神经网络·目标检测·microsoft·机器学习·自然语言处理
草莓熊Lotso2 小时前
GCC/G++ 编译器完全指南:从编译流程到进阶用法(附实操案例)
linux·运维·服务器·网络·c++·人工智能·自动化
Wnq100726 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴6 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案6 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵7 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower7 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程