自然语言处理之RNN实现情感分类

前言

IMDB数据集经过分词处理后需要进行额外的预处理,包括将Token转换为index id,并统一文本序列长度。使用MindSpore.dataset接口进行预处理操作,包括text.Lookup和PadEnd接口。此外,还需要将label数据转换为float32格式。

模型构建

情感分类的模型结构设计,包括使用 nn.Embedding 层加载Glove词向量将输入文本转为向量表示,然后使用LSTM循环神经网络进行特征提取,最后连接至一个全连接层进行分类。整体模型结构为 nn.Embe

RNN(循环神经网络)

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的神经网络。下图为RNN的一般结构:

dding -> nn.LSTM -> nn.Dense。

损失函数与优化器

完成模型主体构建后,首先根据指定的参数实例化网络;然后选择损失函数和优化器。针对本节情感分类问题的特性,即预测Positive或Negative的二分类问题,我们选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

模型训练

模型训练的一般逻辑,包括读取数据、进行正向传播和反向传播更新权重,最后返回损失值。接下来将使用tqdm库设计一个训练一个epoch的函数,用于训练过程和损失的可视化。

总结

使用MindSpore框架实现基于RNN的情感分类任务。包括数据集准备、模型构建、训练与评估、模型保存和预测等全流程。重点介绍了在数据预处理、模型定义和训练细节方面的实现方法。

相关推荐
晚霞apple15 小时前
Graph + Agents 融合架构:2025年七大创新路径
论文阅读·人工智能·深度学习·神经网络·机器学习
纪伊路上盛名在15 小时前
如何批量获取蛋白质序列的所有结构域(domain)数据-2
数据库·人工智能·机器学习·统计·计算生物学·蛋白质
这张生成的图像能检测吗15 小时前
(论文速读)InteractVLM: 基于2D基础模型的3D交互推理
人工智能·计算机视觉·交互·生成模型·图像生成·视觉语言模型·3d重建
浣熊-论文指导15 小时前
人工智能与生物医药融合六大创新思路
论文阅读·人工智能·深度学习·计算机网络·机器学习
文火冰糖的硅基工坊15 小时前
[人工智能-大模型-48]:模型层技术 - 大模型与大语言模型不是一回事
人工智能·语言模型·自然语言处理
居7然15 小时前
DeepSeek OCR:重新定义AI文档处理的“降本增效”新范式
人工智能·算法·语言模型·自然语言处理·大模型·ocr
yubo050915 小时前
自动化模型学习器——autoGluon
机器学习·自动化
xingxing_F16 小时前
Topaz Video AI for Mac AI视频无损放大 视频画质增强
人工智能·macos·音视频
普蓝机器人16 小时前
面向智慧农业的自主移动果蔬采摘机器人:融合视觉识别与自动驾驶的智能化农作系统研究
人工智能·学习·机器人·移动机器人·三维仿真导航
卷福同学16 小时前
AI浏览器comet拉新,一单20美元(附详细教程)
人工智能·后端