目录

自然语言处理之RNN实现情感分类

前言

IMDB数据集经过分词处理后需要进行额外的预处理,包括将Token转换为index id,并统一文本序列长度。使用MindSpore.dataset接口进行预处理操作,包括text.Lookup和PadEnd接口。此外,还需要将label数据转换为float32格式。

模型构建

情感分类的模型结构设计,包括使用 nn.Embedding 层加载Glove词向量将输入文本转为向量表示,然后使用LSTM循环神经网络进行特征提取,最后连接至一个全连接层进行分类。整体模型结构为 nn.Embe

RNN(循环神经网络)

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的神经网络。下图为RNN的一般结构:

dding -> nn.LSTM -> nn.Dense。

损失函数与优化器

完成模型主体构建后,首先根据指定的参数实例化网络;然后选择损失函数和优化器。针对本节情感分类问题的特性,即预测Positive或Negative的二分类问题,我们选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

模型训练

模型训练的一般逻辑,包括读取数据、进行正向传播和反向传播更新权重,最后返回损失值。接下来将使用tqdm库设计一个训练一个epoch的函数,用于训练过程和损失的可视化。

总结

使用MindSpore框架实现基于RNN的情感分类任务。包括数据集准备、模型构建、训练与评估、模型保存和预测等全流程。重点介绍了在数据预处理、模型定义和训练细节方面的实现方法。

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
jndingxin2 小时前
OpenCV 图形API(21)逐像素操作
人工智能·opencv·计算机视觉
程序员小杰@3 小时前
AI前端组件库Ant DesIgn X
开发语言·前端·人工智能
浩哥的技术博客4 小时前
使用MetaGPT 创建智能体(1)入门
人工智能·大模型·智能体
胖哥真不错4 小时前
数据分享:汽车测评数据
python·机器学习·数据分享·汽车测评数据·car evaluation
明月看潮生4 小时前
青少年编程与数学 02-015 大学数学知识点 07课题、数值分析
机器学习·青少年编程·数值分析·编程与数学
不惑_5 小时前
基于HAI应用,从零开始的NLP处理实践指南
人工智能
OreoCC5 小时前
第R3周:RNN-心脏病预测(pytorch版)
人工智能·pytorch·rnn
说私域5 小时前
基于开源链动 2+1 模式 AI 智能名片 S2B2C 商城小程序的社群团购品牌命名策略研究
人工智能·小程序·开源·零售
森叶5 小时前
免费Deepseek-v3接口实现Browser-Use Web UI:浏览器自动化本地模拟抓取数据实录
前端·人工智能·自动化