自然语言处理之RNN实现情感分类

前言

IMDB数据集经过分词处理后需要进行额外的预处理,包括将Token转换为index id,并统一文本序列长度。使用MindSpore.dataset接口进行预处理操作,包括text.Lookup和PadEnd接口。此外,还需要将label数据转换为float32格式。

模型构建

情感分类的模型结构设计,包括使用 nn.Embedding 层加载Glove词向量将输入文本转为向量表示,然后使用LSTM循环神经网络进行特征提取,最后连接至一个全连接层进行分类。整体模型结构为 nn.Embe

RNN(循环神经网络)

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的神经网络。下图为RNN的一般结构:

dding -> nn.LSTM -> nn.Dense。

损失函数与优化器

完成模型主体构建后,首先根据指定的参数实例化网络;然后选择损失函数和优化器。针对本节情感分类问题的特性,即预测Positive或Negative的二分类问题,我们选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

模型训练

模型训练的一般逻辑,包括读取数据、进行正向传播和反向传播更新权重,最后返回损失值。接下来将使用tqdm库设计一个训练一个epoch的函数,用于训练过程和损失的可视化。

总结

使用MindSpore框架实现基于RNN的情感分类任务。包括数据集准备、模型构建、训练与评估、模型保存和预测等全流程。重点介绍了在数据预处理、模型定义和训练细节方面的实现方法。

相关推荐
珠海西格5 分钟前
光伏电站全景感知体系:数据采集与设备状态监测技术
大数据·运维·服务器·数据库·人工智能
产品经理邹继强6 分钟前
VTC产品与创新篇④:产品战略全景图——从“造物者”到“生态设计师”
人工智能·产品经理
Deepoch7 分钟前
自然交互+精准感知!Deepoc具身模型开发板让清洁机器人告别“盲扫”
人工智能·科技·机器人·半导体·清洁机器人·具身模型·deepoc
yuezhilangniao9 分钟前
从对话大脑到万能助手:企业级AI助理五层AI架构实战指南-AI开发架构AI体系理性分层篇
人工智能·架构
玄同76519 分钟前
LangChain 1.0 模型接口:多厂商集成与统一调用
开发语言·人工智能·python·langchain·知识图谱·rag·智能体
acai_polo20 分钟前
如何在国内合规、稳定地使用GPT/Claude/Gemini API?中转服务全解析
人工智能·gpt·ai·语言模型·ai作画
北京青翼科技24 分钟前
【PCIe732】青翼PCIe采集卡-优质光纤卡- PCIe接口-万兆光纤卡
图像处理·人工智能·fpga开发·智能硬件·嵌入式实时数据库
星幻元宇VR38 分钟前
5D动感影院,科技与沉浸式体验的完美融合
人工智能·科技·虚拟现实
WZGL123043 分钟前
“十五五”发展展望:以社区为底座构建智慧康养服务
大数据·人工智能·物联网
阿杰学AI1 小时前
AI核心知识86——大语言模型之 Superalignment(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·超级对齐·superalignment·#ai安全