自然语言处理之RNN实现情感分类

前言

IMDB数据集经过分词处理后需要进行额外的预处理,包括将Token转换为index id,并统一文本序列长度。使用MindSpore.dataset接口进行预处理操作,包括text.Lookup和PadEnd接口。此外,还需要将label数据转换为float32格式。

模型构建

情感分类的模型结构设计,包括使用 nn.Embedding 层加载Glove词向量将输入文本转为向量表示,然后使用LSTM循环神经网络进行特征提取,最后连接至一个全连接层进行分类。整体模型结构为 nn.Embe

RNN(循环神经网络)

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的神经网络。下图为RNN的一般结构:

dding -> nn.LSTM -> nn.Dense。

损失函数与优化器

完成模型主体构建后,首先根据指定的参数实例化网络;然后选择损失函数和优化器。针对本节情感分类问题的特性,即预测Positive或Negative的二分类问题,我们选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

模型训练

模型训练的一般逻辑,包括读取数据、进行正向传播和反向传播更新权重,最后返回损失值。接下来将使用tqdm库设计一个训练一个epoch的函数,用于训练过程和损失的可视化。

总结

使用MindSpore框架实现基于RNN的情感分类任务。包括数据集准备、模型构建、训练与评估、模型保存和预测等全流程。重点介绍了在数据预处理、模型定义和训练细节方面的实现方法。

相关推荐
金融小师妹5 分钟前
基于LSTM-GARCH混合模型:降息预期驱动金价攀升,白银刷新历史峰值的蒙特卡洛模拟验证
大数据·人工智能·深度学习·1024程序员节
A达峰绮9 分钟前
AI时代下的护城河:哪些行业正被重塑,哪些将永不消失?
人工智能·ai·aigc
机器之心12 分钟前
这下Altman急了,OpenAI紧急启动「红色警报」
人工智能·openai
新智元12 分钟前
OpenAI 危!DeepSeek 放大招:追平谷歌最强,手撕 GPT-5 High
人工智能·openai
新知图书12 分钟前
【新书推荐】《玩转FastGPT:像搭积木一样构建智能体》
人工智能·ai agent·智能体·大模型应用开发·大模型应用
EkihzniY20 分钟前
汽车VIN码识别:解锁汽车行业的智能密码
人工智能·汽车
机器之心28 分钟前
华为新开源!扩散语言模型突破32K上下文,还解锁了「慢思考」
人工智能·openai
可触的未来,发芽的智生28 分钟前
微论-自成长系统引发的NLP新生
javascript·人工智能·python·程序人生·自然语言处理
阿里云大数据AI技术38 分钟前
PAI Physical AI Notebook 详解(5):基于 Isaac-Cortex 的软件在环验证
人工智能
行走的bug...44 分钟前
支持向量机
算法·机器学习·支持向量机