自然语言处理之RNN实现情感分类

前言

IMDB数据集经过分词处理后需要进行额外的预处理,包括将Token转换为index id,并统一文本序列长度。使用MindSpore.dataset接口进行预处理操作,包括text.Lookup和PadEnd接口。此外,还需要将label数据转换为float32格式。

模型构建

情感分类的模型结构设计,包括使用 nn.Embedding 层加载Glove词向量将输入文本转为向量表示,然后使用LSTM循环神经网络进行特征提取,最后连接至一个全连接层进行分类。整体模型结构为 nn.Embe

RNN(循环神经网络)

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的神经网络。下图为RNN的一般结构:

dding -> nn.LSTM -> nn.Dense。

损失函数与优化器

完成模型主体构建后,首先根据指定的参数实例化网络;然后选择损失函数和优化器。针对本节情感分类问题的特性,即预测Positive或Negative的二分类问题,我们选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

模型训练

模型训练的一般逻辑,包括读取数据、进行正向传播和反向传播更新权重,最后返回损失值。接下来将使用tqdm库设计一个训练一个epoch的函数,用于训练过程和损失的可视化。

总结

使用MindSpore框架实现基于RNN的情感分类任务。包括数据集准备、模型构建、训练与评估、模型保存和预测等全流程。重点介绍了在数据预处理、模型定义和训练细节方面的实现方法。

相关推荐
图欧学习资源库1 分钟前
人工智能领域、图欧科技、IMYAI智能助手2025年11月更新月报
人工智能·科技
小魔女千千鱼2 分钟前
8GB内存也能跑大模型!openEuler + Ollama 实战部署教程
人工智能
用户377833043492 分钟前
( 教学 )Agent 构建 Prompt(提示词)3. StructuredOutputParser (结构化输出)
人工智能
记忆偶然5 分钟前
语音转文本技术实践:主流工具特性解析与应用场景探讨
人工智能·学习·语音识别
我很哇塞耶5 分钟前
AAAI 2026 | 跨视频推理基准 CrossVid:给多模态大模型出一道“综合题”
人工智能·ai·大模型·多模态大模型
闽农7 分钟前
Trae、Cursor生成式AI,Builder智能体体验报告
人工智能·生成式ai·builder智能体
leafff1239 分钟前
智能体架构深度解析::一文了解LangChain、LangGraph与MCP框架集成原理分析
数据库·人工智能
CClaris10 分钟前
PyTorch 损失函数与激活函数的正确组合
人工智能·pytorch·python·深度学习·机器学习
Mrliu__13 分钟前
Opencv(十八) : 图像凸包检测
人工智能·opencv·计算机视觉
Brduino脑机接口技术答疑14 分钟前
脑机接口数据处理连载(六) 脑机接口频域特征提取实战:傅里叶变换与功率谱分析
人工智能·python·算法·机器学习·数据分析·脑机接口