自然语言处理之RNN实现情感分类

前言

IMDB数据集经过分词处理后需要进行额外的预处理,包括将Token转换为index id,并统一文本序列长度。使用MindSpore.dataset接口进行预处理操作,包括text.Lookup和PadEnd接口。此外,还需要将label数据转换为float32格式。

模型构建

情感分类的模型结构设计,包括使用 nn.Embedding 层加载Glove词向量将输入文本转为向量表示,然后使用LSTM循环神经网络进行特征提取,最后连接至一个全连接层进行分类。整体模型结构为 nn.Embe

RNN(循环神经网络)

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的神经网络。下图为RNN的一般结构:

dding -> nn.LSTM -> nn.Dense。

损失函数与优化器

完成模型主体构建后,首先根据指定的参数实例化网络;然后选择损失函数和优化器。针对本节情感分类问题的特性,即预测Positive或Negative的二分类问题,我们选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

模型训练

模型训练的一般逻辑,包括读取数据、进行正向传播和反向传播更新权重,最后返回损失值。接下来将使用tqdm库设计一个训练一个epoch的函数,用于训练过程和损失的可视化。

总结

使用MindSpore框架实现基于RNN的情感分类任务。包括数据集准备、模型构建、训练与评估、模型保存和预测等全流程。重点介绍了在数据预处理、模型定义和训练细节方面的实现方法。

相关推荐
阿坡RPA8 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049938 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心8 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI10 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c11 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20511 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清11 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh12 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员12 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物12 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技