自然语言处理之RNN实现情感分类

前言

IMDB数据集经过分词处理后需要进行额外的预处理,包括将Token转换为index id,并统一文本序列长度。使用MindSpore.dataset接口进行预处理操作,包括text.Lookup和PadEnd接口。此外,还需要将label数据转换为float32格式。

模型构建

情感分类的模型结构设计,包括使用 nn.Embedding 层加载Glove词向量将输入文本转为向量表示,然后使用LSTM循环神经网络进行特征提取,最后连接至一个全连接层进行分类。整体模型结构为 nn.Embe

RNN(循环神经网络)

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的神经网络。下图为RNN的一般结构:

dding -> nn.LSTM -> nn.Dense。

损失函数与优化器

完成模型主体构建后,首先根据指定的参数实例化网络;然后选择损失函数和优化器。针对本节情感分类问题的特性,即预测Positive或Negative的二分类问题,我们选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

模型训练

模型训练的一般逻辑,包括读取数据、进行正向传播和反向传播更新权重,最后返回损失值。接下来将使用tqdm库设计一个训练一个epoch的函数,用于训练过程和损失的可视化。

总结

使用MindSpore框架实现基于RNN的情感分类任务。包括数据集准备、模型构建、训练与评估、模型保存和预测等全流程。重点介绍了在数据预处理、模型定义和训练细节方面的实现方法。

相关推荐
Baihai_IDP1 分钟前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁5 分钟前
Pytorch torch
人工智能·pytorch·python
拓端研究室22 分钟前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
网安INF25 分钟前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
Despacito0o26 分钟前
ESP32-s3摄像头驱动开发实战:从零搭建实时图像显示系统
人工智能·驱动开发·嵌入式硬件·音视频·嵌入式实时数据库
Leinwin29 分钟前
微软发布突破性医疗AI系统
人工智能·microsoft
机器之心30 分钟前
刚刚,Ilya Sutskever宣布自任CEO:联创被Meta挖走了
人工智能
William.csj1 小时前
Pytorch——查看模型的推理引擎
人工智能·pytorch
NAGNIP1 小时前
Transformer注意力机制——MHA&MQA&GQA
人工智能·算法