【SD】深入理解Stable Diffusion与ComfyUI的使用

【SD】深入理解Stable Diffusion与ComfyUI的使用

      • [1. Stable Diffusion(SD)原理概述](#1. Stable Diffusion(SD)原理概述)
      • [2. 各部件详解](#2. 各部件详解)
      • [3. SD的工作流程](#3. SD的工作流程)
      • [4. ComfyUI与SD的结合](#4. ComfyUI与SD的结合)
      • [5. 总结](#5. 总结)

1. Stable Diffusion(SD)原理概述

  1. 整体结构:SD不是单一模型,而是由三个模型组成,包括文本编码器(Clip)、2. 生成模型(unit)、变分自编码器(VAE)。
    输入输出:最基础的输入为文本和随机变量(Latent Vector),输出为图片。

2. 各部件详解

  1. 文本编码器(Clip)

专门为SD设计的,采用transformer结构。

训练步骤包括:

限制性预训练:使用图片和文本描述数据集,训练文本编码器和图片编码器,使输出向量尽可能接近。

进一步训练:使用物体名称和描述,训练文本编码器解码出图片含义。

  1. 生成模型(unit)

加噪降噪过程:通过VAE的encoder将图片转换成与Latent Vector相同大小的格式,然后逐步加噪并降噪,生成中间结果。

  1. 变分自编码器(VAE)

包括编码器和解码器,将图片编码成较小格式,再解码回原大小,训练目标是最小化原始图片与解码结果的差异。

利用VAE可以从噪声中生成图片,即输入随机噪声至解码器,生成图片。

3. SD的工作流程

文本通过文本编码器转换为向量。

向量与随机变量结合,控制生成内容的随机性。

使用unit进行加噪降噪,生成中间结果。

中间结果通过VAE解码器还原成最终图片。

4. ComfyUI与SD的结合

ComfyUI用于低显存生成图片,但具体如何结合SD的原理和ComfyUI的操作未在文本中详述。

5. 总结

SD通过三个模型的协同工作,实现了文本到图片的生成。

Clip作为文本编码器,负责将文本转换为向量。

Unit负责生成过程的加噪和降噪,VAE则用于图片的编码和解码,最终还原成清晰图片。

整个流程涉及文本处理、随机性控制、图片生成和还原,是一个复杂但高效的生成系统。

相关推荐
wei_shuo11 小时前
GpuGeek 实操指南:So-VITS-SVC 语音合成与 Stable Diffusion 文生图双模型搭建,融合即梦 AI 的深度实践
人工智能·stable diffusion·gpu算力·gpuseek
这是一个懒人2 天前
Stable Diffusion WebUI 插件大全:功能详解与下载地址
stable diffusion
浪淘沙jkp2 天前
AI大模型学习十八、利用Dify+deepseekR1 +本地部署Stable Diffusion搭建 AI 图片生成应用
人工智能·stable diffusion·agent·dify·ollama·deepseek
Icoolkj3 天前
深入了解 Stable Diffusion:AI 图像生成的奥秘
人工智能·stable diffusion
这是一个懒人4 天前
mac 快速安装stable diffusion webui
macos·stable diffusion
璇转的鱼4 天前
Stable Diffusion进阶之Controlnet插件使用
人工智能·ai作画·stable diffusion·aigc·ai绘画
AloneCat20125 天前
stable Diffusion模型结构
stable diffusion
西西弗Sisyphus5 天前
Stable Diffusion XL 文生图
stable diffusion
霍志杰6 天前
stable-diffusion windows本地部署
windows·stable diffusion
昨日之日20066 天前
ACE-Step - 20秒生成4分钟完整歌曲,音乐界的Stable Diffusion,支持50系显卡 本地一键整合包下载
计算机视觉·stable diffusion·音视频