【ML练习】决策树

一、决策树算法概述

二、代码实现

代码目标:我们希望通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。

1. 分类树实现

python 复制代码
import pandas as pd
import numpy as np

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"  
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] 

dataset = pd.read_csv(url, names=names)
dataset

输出:

python 复制代码
X = dataset.iloc[ : ,[0,1,2,3]].values
Y = dataset.iloc[ : ,  4].values
python 复制代码
from sklearn import tree
from sklearn.datasets import load_iris

clf = tree.DecisionTreeClassifier()  # sk-learn的决策树模型
clf = clf.fit(X, Y)                  # 用数据训练树模型构建()
r   = tree.export_text(clf)
print(r)

输出:

python 复制代码
text_x = X[[0,1,50,51,100,101], :]
pred_target_prob = clf.predict_proba(text_x)        # 预测类别概率
pred_target = clf.predict(text_x)              # 预测类别
python 复制代码
print("\n===模型======")
print(r)
print("\n===测试数据:=====")
print(text_x)
print("\n===预测所属类别概率:=====")
print(pred_target_prob)
print("\n===预测所属类别:======")
print(pred_target)

输出:

2. 回归树实现

python 复制代码
import pandas as pd
import numpy as np

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"  
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] 

dataset = pd.read_csv(url, names=names)
dataset

输出:

python 复制代码
X = dataset.iloc[ : ,[0,1,2]].values
Y = dataset.iloc[ : ,  3].values
python 复制代码
from sklearn import tree
from sklearn.datasets import load_iris

clf = tree.DecisionTreeRegressor()         # sk-learn的决策树模型
clf = clf.fit(X, Y)        # 用数据训练树模型构建()
r   = tree.export_text(clf)
python 复制代码
test_x = X[[0,1,50,51,100,101], :]
test_y = Y[[0,1,50,51,100,101]]
pred_target = clf.predict(test_x)  # 预测y

df = pd.DataFrame()
df["原y"] = test_y
df["预测y"] = pred_target
python 复制代码
print("\n===模型======")
# print(r)
print("\n===预测结果======")
print(df)

输出:

三、总结

在使用决策树时,首先需确认分类及预测的对象,另外在处理缺失值时,也需注意。

相关推荐
qq_4798754312 分钟前
RVO和移动语义
前端·算法
菜小麒12 分钟前
推荐算法的八股文
算法·机器学习·推荐算法
antonytyler16 分钟前
机器学习实践项目(二)- 房价预测增强篇 - 特征工程一
人工智能·机器学习
JJJJ_iii27 分钟前
【机器学习16】连续状态空间、深度Q网络DQN、经验回放、探索与利用
人工智能·笔记·python·机器学习·强化学习
Miraitowa_cheems39 分钟前
LeetCode算法日记 - Day 94: 最长的斐波那契子序列的长度
java·数据结构·算法·leetcode·深度优先·动态规划
L_09071 小时前
【Algorithm】Day-11
c++·算法·leetcode
薛慕昭1 小时前
C语言核心技术深度解析:从内存管理到算法实现
c语言·开发语言·算法
.ZGR.1 小时前
第十六届蓝桥杯省赛 C 组——Java题解1(链表知识点)
java·算法·链表·蓝桥杯
近津薪荼1 小时前
每日一练 1(双指针)(单调性)
c++·算法
林太白1 小时前
八大数据结构
前端·后端·算法