【ML练习】决策树

一、决策树算法概述

二、代码实现

代码目标:我们希望通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。

1. 分类树实现

python 复制代码
import pandas as pd
import numpy as np

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"  
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] 

dataset = pd.read_csv(url, names=names)
dataset

输出:

python 复制代码
X = dataset.iloc[ : ,[0,1,2,3]].values
Y = dataset.iloc[ : ,  4].values
python 复制代码
from sklearn import tree
from sklearn.datasets import load_iris

clf = tree.DecisionTreeClassifier()  # sk-learn的决策树模型
clf = clf.fit(X, Y)                  # 用数据训练树模型构建()
r   = tree.export_text(clf)
print(r)

输出:

python 复制代码
text_x = X[[0,1,50,51,100,101], :]
pred_target_prob = clf.predict_proba(text_x)        # 预测类别概率
pred_target = clf.predict(text_x)              # 预测类别
python 复制代码
print("\n===模型======")
print(r)
print("\n===测试数据:=====")
print(text_x)
print("\n===预测所属类别概率:=====")
print(pred_target_prob)
print("\n===预测所属类别:======")
print(pred_target)

输出:

2. 回归树实现

python 复制代码
import pandas as pd
import numpy as np

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"  
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] 

dataset = pd.read_csv(url, names=names)
dataset

输出:

python 复制代码
X = dataset.iloc[ : ,[0,1,2]].values
Y = dataset.iloc[ : ,  3].values
python 复制代码
from sklearn import tree
from sklearn.datasets import load_iris

clf = tree.DecisionTreeRegressor()         # sk-learn的决策树模型
clf = clf.fit(X, Y)        # 用数据训练树模型构建()
r   = tree.export_text(clf)
python 复制代码
test_x = X[[0,1,50,51,100,101], :]
test_y = Y[[0,1,50,51,100,101]]
pred_target = clf.predict(test_x)  # 预测y

df = pd.DataFrame()
df["原y"] = test_y
df["预测y"] = pred_target
python 复制代码
print("\n===模型======")
# print(r)
print("\n===预测结果======")
print(df)

输出:

三、总结

在使用决策树时,首先需确认分类及预测的对象,另外在处理缺失值时,也需注意。

相关推荐
亚里随笔4 分钟前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
荼蘼12 分钟前
机器学习之PCA降维
人工智能·机器学习
max50060034 分钟前
基于桥梁三维模型的无人机检测路径规划系统设计与实现
前端·javascript·python·算法·无人机·easyui
快去睡觉~3 小时前
力扣400:第N位数字
数据结构·算法·leetcode
图灵学术计算机论文辅导3 小时前
傅里叶变换+attention机制,深耕深度学习领域
人工智能·python·深度学习·计算机网络·考研·机器学习·计算机视觉
qqxhb4 小时前
零基础数据结构与算法——第七章:算法实践与工程应用-搜索引擎
算法·搜索引擎·tf-idf·倒排索引·pagerank·算法库
gzzeason5 小时前
LeetCode Hot100:递归穿透值传递问题
算法·leetcode·职场和发展
汤永红5 小时前
week1-[循环嵌套]画正方形
数据结构·c++·算法
pusue_the_sun5 小时前
数据结构——顺序表&&单链表oj详解
c语言·数据结构·算法·链表·顺序表
yi.Ist6 小时前
图论——Djikstra最短路
数据结构·学习·算法·图论·好难