【ML练习】决策树

一、决策树算法概述

二、代码实现

代码目标:我们希望通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。

1. 分类树实现

python 复制代码
import pandas as pd
import numpy as np

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"  
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] 

dataset = pd.read_csv(url, names=names)
dataset

输出:

python 复制代码
X = dataset.iloc[ : ,[0,1,2,3]].values
Y = dataset.iloc[ : ,  4].values
python 复制代码
from sklearn import tree
from sklearn.datasets import load_iris

clf = tree.DecisionTreeClassifier()  # sk-learn的决策树模型
clf = clf.fit(X, Y)                  # 用数据训练树模型构建()
r   = tree.export_text(clf)
print(r)

输出:

python 复制代码
text_x = X[[0,1,50,51,100,101], :]
pred_target_prob = clf.predict_proba(text_x)        # 预测类别概率
pred_target = clf.predict(text_x)              # 预测类别
python 复制代码
print("\n===模型======")
print(r)
print("\n===测试数据:=====")
print(text_x)
print("\n===预测所属类别概率:=====")
print(pred_target_prob)
print("\n===预测所属类别:======")
print(pred_target)

输出:

2. 回归树实现

python 复制代码
import pandas as pd
import numpy as np

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"  
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] 

dataset = pd.read_csv(url, names=names)
dataset

输出:

python 复制代码
X = dataset.iloc[ : ,[0,1,2]].values
Y = dataset.iloc[ : ,  3].values
python 复制代码
from sklearn import tree
from sklearn.datasets import load_iris

clf = tree.DecisionTreeRegressor()         # sk-learn的决策树模型
clf = clf.fit(X, Y)        # 用数据训练树模型构建()
r   = tree.export_text(clf)
python 复制代码
test_x = X[[0,1,50,51,100,101], :]
test_y = Y[[0,1,50,51,100,101]]
pred_target = clf.predict(test_x)  # 预测y

df = pd.DataFrame()
df["原y"] = test_y
df["预测y"] = pred_target
python 复制代码
print("\n===模型======")
# print(r)
print("\n===预测结果======")
print(df)

输出:

三、总结

在使用决策树时,首先需确认分类及预测的对象,另外在处理缺失值时,也需注意。

相关推荐
物联网嵌入式小冉学长4 分钟前
10.C S编程错误分析
c语言·stm32·单片机·算法·嵌入式
Layer1 小时前
实践大语言模型:60 行 NumPy 代码实现 GPT-2
人工智能·机器学习·llm
王中阳Go17 小时前
从超市收银到航空调度:贪心算法如何破解生活中的最优决策谜题?
java·后端·算法
故事挺秃然18 小时前
中文分词:机械分词算法详解与实践总结
算法·nlp
神经星星18 小时前
从石英到铁电材料,哈佛大学提出等变机器学习框架,加速材料大规模电场模拟
人工智能·深度学习·机器学习
车队老哥记录生活20 小时前
【MPC】模型预测控制笔记 (3):无约束输出反馈MPC
笔记·算法
vlln20 小时前
【论文解读】AgentThink:让VLM在自动驾驶中学会思考与使用工具
人工智能·机器学习·自动驾驶
数据堂官方账号20 小时前
七大技术路线解析:自动驾驶如何被数据重新定义
人工智能·机器学习·自动驾驶
地平线开发者20 小时前
BEV 感知算法评价指标简介
算法·自动驾驶
Tadas-Gao21 小时前
大模型训练与推理显卡全指南:从硬件选型到性能优化
人工智能·机器学习·大模型·llm