【ML练习】决策树

一、决策树算法概述

二、代码实现

代码目标:我们希望通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据鸢尾花的四个特征去预测它的类别。

1. 分类树实现

python 复制代码
import pandas as pd
import numpy as np

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"  
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] 

dataset = pd.read_csv(url, names=names)
dataset

输出:

python 复制代码
X = dataset.iloc[ : ,[0,1,2,3]].values
Y = dataset.iloc[ : ,  4].values
python 复制代码
from sklearn import tree
from sklearn.datasets import load_iris

clf = tree.DecisionTreeClassifier()  # sk-learn的决策树模型
clf = clf.fit(X, Y)                  # 用数据训练树模型构建()
r   = tree.export_text(clf)
print(r)

输出:

python 复制代码
text_x = X[[0,1,50,51,100,101], :]
pred_target_prob = clf.predict_proba(text_x)        # 预测类别概率
pred_target = clf.predict(text_x)              # 预测类别
python 复制代码
print("\n===模型======")
print(r)
print("\n===测试数据:=====")
print(text_x)
print("\n===预测所属类别概率:=====")
print(pred_target_prob)
print("\n===预测所属类别:======")
print(pred_target)

输出:

2. 回归树实现

python 复制代码
import pandas as pd
import numpy as np

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"  
names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class'] 

dataset = pd.read_csv(url, names=names)
dataset

输出:

python 复制代码
X = dataset.iloc[ : ,[0,1,2]].values
Y = dataset.iloc[ : ,  3].values
python 复制代码
from sklearn import tree
from sklearn.datasets import load_iris

clf = tree.DecisionTreeRegressor()         # sk-learn的决策树模型
clf = clf.fit(X, Y)        # 用数据训练树模型构建()
r   = tree.export_text(clf)
python 复制代码
test_x = X[[0,1,50,51,100,101], :]
test_y = Y[[0,1,50,51,100,101]]
pred_target = clf.predict(test_x)  # 预测y

df = pd.DataFrame()
df["原y"] = test_y
df["预测y"] = pred_target
python 复制代码
print("\n===模型======")
# print(r)
print("\n===预测结果======")
print(df)

输出:

三、总结

在使用决策树时,首先需确认分类及预测的对象,另外在处理缺失值时,也需注意。

相关推荐
power 雀儿33 分钟前
掩码(Mask)机制 结合 多头自注意力函数
算法
会叫的恐龙37 分钟前
C++ 核心知识点汇总(第六日)(字符串)
c++·算法·字符串
小糯米6011 小时前
C++顺序表和vector
开发语言·c++·算法
We་ct1 小时前
LeetCode 56. 合并区间:区间重叠问题的核心解法与代码解析
前端·算法·leetcode·typescript
Lionel6891 小时前
分步实现 Flutter 鸿蒙轮播图核心功能(搜索框 + 指示灯)
算法·图搜索算法
小妖6661 小时前
js 实现快速排序算法
数据结构·算法·排序算法
xsyaaaan1 小时前
代码随想录Day30动态规划:背包问题二维_背包问题一维_416分割等和子集
算法·动态规划
木非哲1 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
zheyutao2 小时前
字符串哈希
算法
A尘埃2 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习