Pytorch 8

这节课是讲mini_batch数据下载的

python 复制代码
from torch.utils.data import Dataset
from torch.utils.data import DataLoader

第一个类是抽象类,只能继承

第二个可以直接用

python 复制代码
class DiabetesDataset(Dataset):
    def __init__(self, filepath):
        xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)
        self.len = xy.shape[0] # shape(多少行,多少列)
        self.x_data = torch.from_numpy(xy[:, :-1])
        self.y_data = torch.from_numpy(xy[:, [-1]])
 
    def __getitem__(self, index):
        return self.x_data[index], self.y_data[index]
 
    def __len__(self):
        return self.len

定义这个类要做两件事,第一件就是让他能下标调用,第二件事可以返回长度

数据下载

python 复制代码
dataset = DiabetesDataset('diabetes.csv')
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True, num_workers=0) 
# 接受四个参数,第一个是接受的,第二个是mini_batch的大小,第三是是否随机,第四是分为几个线程来下载数据

神经网络

python 复制代码
if __name__ == '__main__':
    for epoch in range(100):
        for i, data in enumerate(train_loader, 0): # train_loader 是先shuffle后mini_batch
            inputs, labels = data
            y_pred = model(inputs)
            loss = criterion(y_pred, labels)
            print(epoch, i, loss.item())
 
            optimizer.zero_grad()
            loss.backward()
 
            optimizer.step()

放在if里面是因为在windows系统里面会出错,i是下标

相关推荐
5Gcamera5 小时前
4G body camera BC310/BC310D user manual
人工智能·边缘计算·智能安全帽·执法记录仪·smarteye
梨子串桃子_6 小时前
推荐系统学习笔记 | PyTorch学习笔记
pytorch·笔记·python·学习·算法
爱喝可乐的老王6 小时前
机器学习中常用交叉验证总结
人工智能·机器学习
公链开发7 小时前
2026 Web3机构级风口:RWA Tokenization + ZK隐私系统定制开发全解析
人工智能·web3·区块链
wyw00007 小时前
目标检测之YOLO
人工智能·yolo·目标检测
发哥来了7 小时前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
文言一心7 小时前
LINUX离线升级 Python 至 3.11.9 操作手册
linux·运维·python
_codemonster7 小时前
强化学习入门到实战系列(四)马尔科夫决策过程
人工智能
北邮刘老师7 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网