中文分词库 jieba 详细使用方法与案例演示

1 前言

jieba 是一个非常流行的中文分词库,具有高效、准确分词的效果。

它支持3种分词模式:

  • 精确模式
  • 全模式
  • 搜索引擎模式
python 复制代码
jieba==0.42.1

测试环境:python3.10.9

2 三种模式

2.1 精确模式

适应场景:文本分析。

功能:可以将句子精确的分开。

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"
segments = jieba.lcut(text)

print("精确模式分词结果:", segments)
# ['有', '勇气', '的', '牛排', '是', '一个', '编程', '领域', '博主', '的', '名字']

2.2 全模式

适应场景:提取词语。

功能:可以将句子中的成词的词语扫描出来,速度非常快,但不能解决歧义问题。

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"

segments = jieba.lcut(text, cut_all=True)
print("全模式分词结果:", segments)
# ['有', '勇气', '的', '牛排', '是', '一个', '编程', '领域', '博', '主', '的', '名字']

2.3 搜索引擎模式

适应场景:搜索分词。

功能:在精确模式的基础上,对长分词进行切分,提高召回率。

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"

segments = jieba.lcut_for_search(text)
print("搜索引擎模式分词结果:", segments)

3 自定义词典

jieba允许用户自定义词典,以提高分词的准确性。

比如专业术语、名字、网络新流行词汇、方言、以及其他不常见短语名字等。

3.1 添加单个词语

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"

jieba.add_word("有勇气的牛排")
segments = jieba.lcut_for_search(text)
print("搜索引擎模式分词结果:", segments)
# ['勇气', '牛排', '有勇气的牛排', '是', '一个', '编程', '领域', '博主', '的', '名字']

3.2 添加词典文件

cs_dict.txt

复制代码
有勇气的牛排
编程领域

main.py

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"

jieba.load_userdict("cs_dict.txt")

segments = jieba.lcut(text)
print("自定义词典文件分词结果:", segments)
# ['有勇气的牛排', '是', '一个', '编程领域', '博主', '的', '名字']

4 词性标注

jieba 的词性标注(POS tagging)功能使用了标注词性(Part-of-Speech tags)来表示每个词的词性。

4.1 词性对照表

原文地址:https://www.couragesteak.com/article/454

shell 复制代码
a   形容词  			ad  副形词  
ag  形容词性语素  	  an  名形词  
b   区别词  			c   连词  
d   副词  			dg  副语素  
e   叹词  			f   方位词  
g   语素  			h   前缀  
i   成语  			j   简称略语  
k   后缀  			l   习用语  
m   数词  			mg  数语素  
mq  数量词  			n   名词  
ng  名语素  			nr  人名  
ns  地名  			nt  机构团体  
nz  其他专名  		   o   拟声词  
p   介词  			q   量词  
r   代词  			rg  代词性语素  
s   处所词  			t   时间词  
tg  时间词性语素  	  u   助词  
vg  动语素  			v   动词  
vd  副动词  			vn  名动词  
w   标点符号  			x   非语素字  
y   语气词  			z   状态词  

4.2 测试案例

python 复制代码
import jieba.posseg as pseg

text = "有勇气的牛排是一个编程领域博主的名字"

words = pseg.cut(text)
for word, flag in words:
    print(f"{word} - {flag}")

5 关键词提取

python 复制代码
from jieba import analyse
text = "有勇气的牛排是一个编程领域博主的名字"

# 取前5个关键词
keywords = analyse.extract_tags(text, topK=5)
print("关键词提取结果:", keywords)

6 词频统计

python 复制代码
import jieba
from collections import Counter
text = "有勇气的牛排是一个编程领域博主的名字"

# 取前5个关键词
segments = jieba.lcut(text)
word_counts = Counter(segments)
print("词频统计结果:", word_counts)
相关推荐
失散131 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
什么都想学的阿超9 小时前
【大语言模型 02】多头注意力深度剖析:为什么需要多个头
人工智能·语言模型·自然语言处理
MARS_AI_14 小时前
云蝠智能VoiceAgent:AI赋能售后服务场景的创新实践
人工智能·语言模型·自然语言处理·人机交互·信息与通信
亚里随笔1 天前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
数据知道1 天前
机器翻译:模型微调(Fine-tuning)与调优详解
人工智能·自然语言处理·机器翻译
未来之窗软件服务1 天前
自建知识库,向量数据库 体系建设(五)之 中文分词库 HanLP ——仙盟创梦IDE
自然语言处理·中文分词·仙盟创梦ide·东方仙盟
skywalk81631 天前
LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。
人工智能·语言模型·自然语言处理
Websites2 天前
Hyperf 百度翻译接口实现方案
开发语言·自然语言处理·php·自动翻译
数据知道2 天前
机器翻译:Hugging Face库详解
人工智能·自然语言处理·机器翻译
Blossom.1182 天前
把大模型当“温度计”——基于 LLM 的分布式系统异常根因定位实战
人工智能·python·深度学习·机器学习·自然语言处理·分类·bert