中文分词库 jieba 详细使用方法与案例演示

1 前言

jieba 是一个非常流行的中文分词库,具有高效、准确分词的效果。

它支持3种分词模式:

  • 精确模式
  • 全模式
  • 搜索引擎模式
python 复制代码
jieba==0.42.1

测试环境:python3.10.9

2 三种模式

2.1 精确模式

适应场景:文本分析。

功能:可以将句子精确的分开。

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"
segments = jieba.lcut(text)

print("精确模式分词结果:", segments)
# ['有', '勇气', '的', '牛排', '是', '一个', '编程', '领域', '博主', '的', '名字']

2.2 全模式

适应场景:提取词语。

功能:可以将句子中的成词的词语扫描出来,速度非常快,但不能解决歧义问题。

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"

segments = jieba.lcut(text, cut_all=True)
print("全模式分词结果:", segments)
# ['有', '勇气', '的', '牛排', '是', '一个', '编程', '领域', '博', '主', '的', '名字']

2.3 搜索引擎模式

适应场景:搜索分词。

功能:在精确模式的基础上,对长分词进行切分,提高召回率。

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"

segments = jieba.lcut_for_search(text)
print("搜索引擎模式分词结果:", segments)

3 自定义词典

jieba允许用户自定义词典,以提高分词的准确性。

比如专业术语、名字、网络新流行词汇、方言、以及其他不常见短语名字等。

3.1 添加单个词语

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"

jieba.add_word("有勇气的牛排")
segments = jieba.lcut_for_search(text)
print("搜索引擎模式分词结果:", segments)
# ['勇气', '牛排', '有勇气的牛排', '是', '一个', '编程', '领域', '博主', '的', '名字']

3.2 添加词典文件

cs_dict.txt

有勇气的牛排
编程领域

main.py

python 复制代码
import jieba

text = "有勇气的牛排是一个编程领域博主的名字"

jieba.load_userdict("cs_dict.txt")

segments = jieba.lcut(text)
print("自定义词典文件分词结果:", segments)
# ['有勇气的牛排', '是', '一个', '编程领域', '博主', '的', '名字']

4 词性标注

jieba 的词性标注(POS tagging)功能使用了标注词性(Part-of-Speech tags)来表示每个词的词性。

4.1 词性对照表

原文地址:https://www.couragesteak.com/article/454

shell 复制代码
a   形容词  			ad  副形词  
ag  形容词性语素  	  an  名形词  
b   区别词  			c   连词  
d   副词  			dg  副语素  
e   叹词  			f   方位词  
g   语素  			h   前缀  
i   成语  			j   简称略语  
k   后缀  			l   习用语  
m   数词  			mg  数语素  
mq  数量词  			n   名词  
ng  名语素  			nr  人名  
ns  地名  			nt  机构团体  
nz  其他专名  		   o   拟声词  
p   介词  			q   量词  
r   代词  			rg  代词性语素  
s   处所词  			t   时间词  
tg  时间词性语素  	  u   助词  
vg  动语素  			v   动词  
vd  副动词  			vn  名动词  
w   标点符号  			x   非语素字  
y   语气词  			z   状态词  

4.2 测试案例

python 复制代码
import jieba.posseg as pseg

text = "有勇气的牛排是一个编程领域博主的名字"

words = pseg.cut(text)
for word, flag in words:
    print(f"{word} - {flag}")

5 关键词提取

python 复制代码
from jieba import analyse
text = "有勇气的牛排是一个编程领域博主的名字"

# 取前5个关键词
keywords = analyse.extract_tags(text, topK=5)
print("关键词提取结果:", keywords)

6 词频统计

python 复制代码
import jieba
from collections import Counter
text = "有勇气的牛排是一个编程领域博主的名字"

# 取前5个关键词
segments = jieba.lcut(text)
word_counts = Counter(segments)
print("词频统计结果:", word_counts)
相关推荐
真智AI22 分钟前
使用 DistilBERT 进行资源高效的自然语言处理
人工智能·自然语言处理
青衫弦语14 小时前
【论文精读】VLM-AD:通过视觉-语言模型监督实现端到端自动驾驶
人工智能·深度学习·语言模型·自然语言处理·自动驾驶
没枕头我咋睡觉14 小时前
【大语言模型_4】源码编译vllm框架cpu版
人工智能·语言模型·自然语言处理
WHATEVER_LEO14 小时前
【每日论文】Text-guided Sparse Voxel Pruning for Efficient 3D Visual Grounding
人工智能·深度学习·神经网络·算法·机器学习·自然语言处理
小宇爱15 小时前
38、深度学习-自学之路-自己搭建深度学习框架-3、自动梯度计算改进
人工智能·深度学习·自然语言处理
小白狮ww17 小时前
国产超强开源大语言模型 DeepSeek-R1-70B 一键部署教程
人工智能·深度学习·机器学习·语言模型·自然语言处理·开源·deepseek
Blankspace空白18 小时前
【小白学AI系列】NLP 核心知识点(八)多头自注意力机制
人工智能·自然语言处理
qq_153214526421 小时前
Openai Dashboard可视化微调大语言模型
人工智能·语言模型·自然语言处理·chatgpt·nlp·gpt-3·transformer
真智AI1 天前
使用AI创建流程图和图表的 3 种简单方法
人工智能·深度学习·神经网络·机器学习·自然语言处理·流程图
花千树-0101 天前
Java中的自然语言处理(NLP)工具:Stanford NLP、Apache OpenNLP、DL4J
java·自然语言处理·nlp·aigc·apache