Pytorch使用教学1-Tensor的创建

0 导读

在我们不知道什么是深度学习计算框架时,我们可以把PyTorch看做是Python的第三方库,在PyTorch中定义了适用于深度学习的张量Tensor,以及张量的各类计算。就相当于NumPy中定义的Array和对应的科学计算方法,正是这些基本数据类型和对应的方法函数,为我们进一步在PyTorch上进行深度学习建模提供了基本对象和基本工具。

因此,我们需要熟练掌握PyTorch中张量的基本操作方法。torch.Tensor是一种包含单一数据类型元素的多维矩阵。

Python 复制代码
import torch
torch.__version__
# '1.7.0'

1 张量的创建

张量的最基本创建方法和Numpy中创建Array的格式一致,都是创建函数的格式。

1.1 通过列表创建

Python 复制代码
t = torch.tensor([1, 2])
print(t)
# tensor([1, 2])

1.2 通过元组创建

Python 复制代码
t = torch.tensor((1, 2))
print(t)
# tensor([1, 2])

1.3 通过Numpy创建

Python 复制代码
import numpy as np
n = np.array([1, 2])
t = torch.tensor(n)
print(t)
# tensor([1, 2])

2 张量的数据类型

Python中,我们可以使用type()方法查看一个变量的数据类型。

2.1 type()

Python 复制代码
t = torch.tensor([1, 2])
print(type(t))
# <class 'torch.Tensor'>

Python环境中直接使用type()方法打印变量t的类型torch.Tensor。那么Tensor下有什么类型呢?我们需要使用dtype方法进行查看。

2.2 dtype

Python 复制代码
t = torch.tensor([1, 2])
print(t.dtype)
# torch.int64

我们可以看到t的大类是Tensor,更具体的说,它是torch.int64类型的变量。

2.3 type()dtype的不同

Python 复制代码
i = torch.tensor([1, 2])
f = torch.tensor([1.0, 2.0])
print(type(i), i.dtype, sep = ' , ')
print(type(f), f.dtype, sep = ' , ')
# <class 'torch.Tensor'> , torch.int64
# <class 'torch.Tensor'> , torch.float32

我们可以看到,type()不能识别出Tensor内部的数据类型,只能识别出变量的基本类型是Tensor,而dtype方法可以识别出变量具体为哪种类型的Tensor

2.4 PyTorchTensor的数据类型

PyTorch中我们常用Tensor的数据类型有整数型、浮点型和布尔型。具体如下:

数据类型 dtype
32bit浮点数 torch.float32或torch.float
64bit浮点数 torch.float64或torch.double
16bit浮点数 torch.half
8bit无符号整数 torch.unit8
8bit有符号整数 torch.int8
16bit有符号整数 torch.int16或torch.short
32bit有符号整数 torch.int32或torch.int
64bit有符号整数 torch.int64
布尔型 torch.bool
复数型 torch.complex64

此外,我们可以在创建张量时通过dtype参数直接定义它的类型。

Python 复制代码
t = torch.tensor([1, 2], dtype = torch.float64)
print(t.dtype)
# torch.float64

3 张量类型的转化

3.1 张量类型的隐式转化

NumpyArray相同,当张量各元素属于不同类型时,系统会自动进行隐式转化。

Python 复制代码
t = torch.tensor([1.1, 2])
print(t)
# tensor([1.1000, 2.0000])
Python 复制代码
t = torch.tensor([True, 2])
print(t)
# tensor([1, 2])

3.2 张量类型的转化方法

可以使用.float().int()等方法对张量类型进行转化。

Python 复制代码
t = torch.tensor([1, 2])
f = t.float()
print(f)
print(t)
# tensor([1., 2.])
# tensor([1, 2])

需要注意的是,这里并不会改变原来t的数据类型。

Pytorch张量操作大全:

Pytorch使用教学1-Tensor的创建
Pytorch使用教学2-Tensor的维度
Pytorch使用教学3-特殊张量的创建与类型转化
Pytorch使用教学4-张量的索引
Pytorch使用教学5-视图view与reshape的区别
Pytorch使用教学6-张量的分割与合并
Pytorch使用教学7-张量的广播
Pytorch使用教学8-张量的科学运算
Pytorch使用教学9-张量的线性代数运算
Pytorch使用教学10-张量操作方法大总结

相关推荐
汽车仪器仪表相关领域8 分钟前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试
璞华Purvar14 分钟前
地方产投集团数字化平台建设实战:从内控管理到决策赋能(璞华公开课第5期活动回顾)
大数据·人工智能
Byron Loong25 分钟前
【半导体】KLA 公司eDR介绍
人工智能
独行soc32 分钟前
2025年渗透测试面试题总结-275(题目+回答)
网络·python·安全·web安全·网络安全·渗透测试·安全狮
Jay200211134 分钟前
【机器学习】31-32 强化学习介绍 & 状态-动作值函数
人工智能·机器学习
测试人社区-千羽40 分钟前
大语言模型在软件测试中的应用与挑战
人工智能·测试工具·语言模型·自然语言处理·面试·职场和发展·aigc
niaonao1 小时前
企业级AI Agent本地化部署实战:基于讯飞星辰与Astron的实战详解(附避坑清单)
人工智能·agent·科大讯飞·astron
ModelWhale1 小时前
实训赋能,平台支撑:和鲸科技助力南京大学人工智能基础课落地
人工智能·科技
胡萝卜3.01 小时前
C++现代模板编程核心技术精解:从类型分类、引用折叠、完美转发的内在原理,到可变模板参数的基本语法、包扩展机制及emplace接口的底层实现
开发语言·c++·人工智能·机器学习·完美转发·引用折叠·可变模板参数
Codebee2 小时前
OODER图生代码框架:Java注解驱动的全栈实现与落地挑战
人工智能