论文阅读【检测】:Facebook ECCV2020 | DETR

文章目录

论文地址

DETR

Abstract

提出了一种将目标检测视为直接集预测问题 的新方法。简化了检测pipeline,有效地消除了许多手工设计的组件的需求,例如非最大抑制过程或锚生成,这些组件明确地编码了任务的先验知识。新框架的主要成分,是基于集合的全局损失,它通过二部匹配强制唯一的预测,以及变transformer encoder-decoder架构。给定一组固定的学习对象查询,DETR 推理对象和全局图像上下文的关系,以并行直接输出最终的预测集。DETR在具有挑战性的COCO对象检测数据集上展示了与成熟和高度优化的Faster RCNN基线相当的准确性和运行时性能。

Motivation

通常检测器通过在proposal、anchor 或center point 上定义代理回归和分类问题,以间接方式解决该集合预测任务。它们的性能受到后处理步骤、锚集的设计以及将目标框分配给锚的启发式方法显着影响。为了简化这些pipeline,所以提出了一种直接集预测方法来绕过代理任务。

模型框架

从论文图中可以看出,整个pipeline确实很简单。


详细结构

图像先经过下采样,用小的feature map输入transformer结构中,必然导致了对小目标检测效果较差。论文中也明确说了这个问题。 初始化的queries为0, 同时position embedding 每个模块都要加一次

Encoder

Decoder

小结

确实简化都不少手工设计的组建,但是在小目标的表现上较差。NMS感觉还是需要的,不可能刚刚好一个目标对应预测一个框。

相关推荐
m0_6501082417 小时前
MindDrive:融合世界模型与视觉语言模型的端到端自动驾驶框架
论文阅读·自动驾驶·轨迹生成与规划·世界动作模型·e2e-ad·vlm导向评估器·minddrive
CoookeCola18 小时前
无需抠图!Qwen-Image-Layered 一键分解图像图层,支持图层级精准编辑
论文阅读·深度学习·计算机视觉·ai作画·开源·视觉检测·aigc
bylander19 小时前
【论文阅读】VTP:Towards Scalable Pre-training of Visual Tokenizers for Generation
论文阅读·图像处理·大模型
czijin19 小时前
【论文阅读】LoRA: Low-Rank Adaptation of Large Language Models
论文阅读·人工智能·语言模型
有Li19 小时前
诊断文本引导的分层分类全玻片图像表征学习|文献速递-医疗影像分割与目标检测最新技术
论文阅读·深度学习·文献·医学生
万里鹏程转瞬至1 天前
论文简读:Qwen2.5-VL Technical Report
论文阅读·深度学习·多模态
万里鹏程转瞬至2 天前
论文简读:Qwen3-VL Technical Report | Qwen3VL技术报告
论文阅读·深度学习·多模态
墨绿色的摆渡人2 天前
论文笔记(一百一十二)Pos3R: 6D Pose Estimation for Unseen Objects Made Easy
论文阅读
c0d1ng2 天前
十二月第三周周报(论文阅读)
论文阅读
Xy-unu2 天前
[LLM]AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning
论文阅读·人工智能·算法·机器学习·transformer·论文笔记·剪枝