【Pytorch实战教程】Pytorch中model.train()和model.eval()的作用

在 PyTorch 中,model.train()model.eval() 用于设置模型的训练模式评估模式,它们的作用主要涉及模型中的特定层如批归一化(Batch Normalization)和丢弃(Dropout)等。

model.train()

当你调用 model.train() 时,你将模型设置为训练模式。这意味着所有的层都会按照训练时的行为来运行。例如:

  • 批归一化层(Batch Normalization):在训练模式下,这些层会正常使用当前批次的均值和方差来归一化输入数据,同时也会更新用于归一化的运行均值和方差。
  • 丢弃层(Dropout):在训练模式下,随机地丢弃一部分网络连接(根据设定的丢弃概率),这是为了防止模型过拟合。

model.eval()

当你调用 model.eval() 时,你将模型设置为评估模式,通常用在验证和测试阶段。这会改变某些层的行为:

  • 批归一化层 :在评估模式下,这些层不会使用当前批次的统计数据,而是使用在训练过程中累积的运行均值和方差来归一化输入,以保证模型输出的一致性。
  • 丢弃层 :在评估模式下,不进行丢弃操作,所有的连接都保持活跃。

使用这两个方法是为了确保模型在训练和评估时能够正确地表现其预期的行为。确保在适当的时候切换这两种模式对于模型性能和效果至关重要。

相关推荐
CCPC不拿奖不改名4 分钟前
两种完整的 Git 分支协作流程
大数据·人工智能·git·python·elasticsearch·搜索引擎·自然语言处理
Coding茶水间6 分钟前
基于深度学习的交通标志检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
亿信华辰软件20 分钟前
构建智慧数据中台,赋能饮料集团全链路数字化转型新引擎
大数据·人工智能·云计算
大模型实验室Lab4AI30 分钟前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
旷野说39 分钟前
打造 36Gbps 超高速本地机器学习开发环境
人工智能·机器学习
陈天伟教授1 小时前
人工智能应用-机器视觉:绘画大师 04.基于风格迁移的绘画大师
人工智能·神经网络·数码相机·生成对抗网络·dnn
爱打代码的小林1 小时前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉
AI浩1 小时前
面向无监督多场景行人重识别的图像-文本知识建模
人工智能·目标检测
Takoony1 小时前
深度学习多卡训练必须使用偶数张GPU吗?原理深度解析
人工智能·深度学习
翱翔的苍鹰1 小时前
通俗、生动的方式 来讲解“卷积神经网络(CNN)
人工智能·神经网络·cnn