【Pytorch实战教程】Pytorch中model.train()和model.eval()的作用

在 PyTorch 中,model.train()model.eval() 用于设置模型的训练模式评估模式,它们的作用主要涉及模型中的特定层如批归一化(Batch Normalization)和丢弃(Dropout)等。

model.train()

当你调用 model.train() 时,你将模型设置为训练模式。这意味着所有的层都会按照训练时的行为来运行。例如:

  • 批归一化层(Batch Normalization):在训练模式下,这些层会正常使用当前批次的均值和方差来归一化输入数据,同时也会更新用于归一化的运行均值和方差。
  • 丢弃层(Dropout):在训练模式下,随机地丢弃一部分网络连接(根据设定的丢弃概率),这是为了防止模型过拟合。

model.eval()

当你调用 model.eval() 时,你将模型设置为评估模式,通常用在验证和测试阶段。这会改变某些层的行为:

  • 批归一化层 :在评估模式下,这些层不会使用当前批次的统计数据,而是使用在训练过程中累积的运行均值和方差来归一化输入,以保证模型输出的一致性。
  • 丢弃层 :在评估模式下,不进行丢弃操作,所有的连接都保持活跃。

使用这两个方法是为了确保模型在训练和评估时能够正确地表现其预期的行为。确保在适当的时候切换这两种模式对于模型性能和效果至关重要。

相关推荐
没有梦想的咸鱼185-1037-16632 分钟前
最新面向自然科学领域机器学习与深度学习技术应用
人工智能·深度学习·机器学习·transformer
lambo mercy8 分钟前
self-attention与Bert
人工智能·深度学习·bert
格林威23 分钟前
基于轮廓特征的工件分类识别:实现无模板快速分拣的 8 个核心算法,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·目标跟踪·分类·数据挖掘
村口曹大爷25 分钟前
Aider-TUI: The Professional AI Pair Programming Shell
人工智能·ai·code·aider
乾元25 分钟前
10 个可复制的企业级项目:从需求到交付的 AI 网络工程模板(深度实战版)
运维·网络·人工智能·网络协议·安全
深圳南柯电子27 分钟前
南柯电子|EMI测试系统:5G时代新挑战,如何护航全行业电磁兼容
人工智能·汽车·互联网·实验室·emc
linmoo198629 分钟前
Langchain4j 系列之十九 - RAG之Retrieval
人工智能·langchain·retrieval·rag·langchain4j
沛沛老爹29 分钟前
Web开发者突围AI战场:Agent Skills元工具性能优化实战指南——像优化Spring Boot一样提升AI吞吐量
java·开发语言·人工智能·spring boot·性能优化·架构·企业开发
MM_MS32 分钟前
Halcon小案例--->路由器散热口个数(两种方法)
人工智能·算法·目标检测·计算机视觉·视觉检测·智能路由器·视觉