【Pytorch实战教程】Pytorch中model.train()和model.eval()的作用

在 PyTorch 中,model.train()model.eval() 用于设置模型的训练模式评估模式,它们的作用主要涉及模型中的特定层如批归一化(Batch Normalization)和丢弃(Dropout)等。

model.train()

当你调用 model.train() 时,你将模型设置为训练模式。这意味着所有的层都会按照训练时的行为来运行。例如:

  • 批归一化层(Batch Normalization):在训练模式下,这些层会正常使用当前批次的均值和方差来归一化输入数据,同时也会更新用于归一化的运行均值和方差。
  • 丢弃层(Dropout):在训练模式下,随机地丢弃一部分网络连接(根据设定的丢弃概率),这是为了防止模型过拟合。

model.eval()

当你调用 model.eval() 时,你将模型设置为评估模式,通常用在验证和测试阶段。这会改变某些层的行为:

  • 批归一化层 :在评估模式下,这些层不会使用当前批次的统计数据,而是使用在训练过程中累积的运行均值和方差来归一化输入,以保证模型输出的一致性。
  • 丢弃层 :在评估模式下,不进行丢弃操作,所有的连接都保持活跃。

使用这两个方法是为了确保模型在训练和评估时能够正确地表现其预期的行为。确保在适当的时候切换这两种模式对于模型性能和效果至关重要。

相关推荐
comli_cn1 分钟前
残差链接(Residual Connection)
人工智能·算法
摸鱼仙人~3 分钟前
在政务公文场景中落地 RAG + Agent:技术难点与系统化解决方案
人工智能·政务
Aaron15889 分钟前
基于VU13P在人工智能高速接口传输上的应用浅析
人工智能·算法·fpga开发·硬件架构·信息与通信·信号处理·基带工程
予枫的编程笔记11 分钟前
【论文解读】DLF:以语言为核心的多模态情感分析新范式 (AAAI 2025)
人工智能·python·算法·机器学习
HyperAI超神经14 分钟前
完整回放|上海创智/TileAI/华为/先进编译实验室/AI9Stars深度拆解 AI 编译器技术实践
人工智能·深度学习·机器学习·开源
大模型真好玩15 分钟前
LangGraph智能体开发设计模式(四)——LangGraph多智能体设计模式:网络架构
人工智能·langchain·agent
北辰alk17 分钟前
RAG嵌入模型选择全攻略:从理论到代码实战
人工智能
Smoothzjc20 分钟前
👉 求你了,别再裸写 fetch 做 AI 流式响应了!90% 的人都在踩这个坑
前端·人工智能·后端
沛沛老爹20 分钟前
Web开发者进阶AI:Agent技能设计模式之迭代分析与上下文聚合实战
前端·人工智能·设计模式
创作者mateo21 分钟前
PyTorch 入门笔记配套【完整练习代码】
人工智能·pytorch·笔记