【Pytorch实战教程】Pytorch中model.train()和model.eval()的作用

在 PyTorch 中,model.train()model.eval() 用于设置模型的训练模式评估模式,它们的作用主要涉及模型中的特定层如批归一化(Batch Normalization)和丢弃(Dropout)等。

model.train()

当你调用 model.train() 时,你将模型设置为训练模式。这意味着所有的层都会按照训练时的行为来运行。例如:

  • 批归一化层(Batch Normalization):在训练模式下,这些层会正常使用当前批次的均值和方差来归一化输入数据,同时也会更新用于归一化的运行均值和方差。
  • 丢弃层(Dropout):在训练模式下,随机地丢弃一部分网络连接(根据设定的丢弃概率),这是为了防止模型过拟合。

model.eval()

当你调用 model.eval() 时,你将模型设置为评估模式,通常用在验证和测试阶段。这会改变某些层的行为:

  • 批归一化层 :在评估模式下,这些层不会使用当前批次的统计数据,而是使用在训练过程中累积的运行均值和方差来归一化输入,以保证模型输出的一致性。
  • 丢弃层 :在评估模式下,不进行丢弃操作,所有的连接都保持活跃。

使用这两个方法是为了确保模型在训练和评估时能够正确地表现其预期的行为。确保在适当的时候切换这两种模式对于模型性能和效果至关重要。

相关推荐
信息快讯8 分钟前
【人工智能与数据驱动方法加速金属材料设计与应用】
人工智能·材料工程·金属材料·结构材料设计
c#上位机24 分钟前
halcon图像增强——emphasize
图像处理·人工智能·计算机视觉·c#·上位机·halcon
老蒋新思维36 分钟前
创客匠人峰会洞察:私域 AI 化重塑知识变现 —— 创始人 IP 的私域增长新引擎
大数据·网络·人工智能·网络协议·tcp/ip·创始人ip·创客匠人
知行力1 小时前
【GitHub每日速递 20251209】Next.js融合AI,让draw.io图表创建、修改、可视化全靠自然语言!
javascript·人工智能·github
冷yan~1 小时前
OpenAI Codex CLI 完全指南:AI 编程助手的终端革命
人工智能·ai·ai编程
菜鸟‍1 小时前
【论文学习】通过编辑习得分数函数实现扩散模型中的图像隐藏
人工智能·学习·机器学习
AKAMAI1 小时前
无服务器计算架构的优势
人工智能·云计算
阿星AI工作室2 小时前
gemini3手势互动圣诞树保姆级教程来了!附提示词
前端·人工智能
刘一说2 小时前
时空大数据与AI融合:重塑物理世界的智能中枢
大数据·人工智能·gis