【Pytorch实战教程】Pytorch中model.train()和model.eval()的作用

在 PyTorch 中,model.train()model.eval() 用于设置模型的训练模式评估模式,它们的作用主要涉及模型中的特定层如批归一化(Batch Normalization)和丢弃(Dropout)等。

model.train()

当你调用 model.train() 时,你将模型设置为训练模式。这意味着所有的层都会按照训练时的行为来运行。例如:

  • 批归一化层(Batch Normalization):在训练模式下,这些层会正常使用当前批次的均值和方差来归一化输入数据,同时也会更新用于归一化的运行均值和方差。
  • 丢弃层(Dropout):在训练模式下,随机地丢弃一部分网络连接(根据设定的丢弃概率),这是为了防止模型过拟合。

model.eval()

当你调用 model.eval() 时,你将模型设置为评估模式,通常用在验证和测试阶段。这会改变某些层的行为:

  • 批归一化层 :在评估模式下,这些层不会使用当前批次的统计数据,而是使用在训练过程中累积的运行均值和方差来归一化输入,以保证模型输出的一致性。
  • 丢弃层 :在评估模式下,不进行丢弃操作,所有的连接都保持活跃。

使用这两个方法是为了确保模型在训练和评估时能够正确地表现其预期的行为。确保在适当的时候切换这两种模式对于模型性能和效果至关重要。

相关推荐
雨大王5123 分钟前
汽车工厂智能调度系统:自适应调度算法如何解决资源与任务匹配难题?
大数据·人工智能·汽车·制造
雨大王5129 分钟前
缩短交付周期:汽车企业如何通过计划智能体实现高效协同?
大数据·人工智能·汽车·制造
PEARL的AI指南9 分钟前
智启时代AI定制亲测:合规与私有化部署详解
人工智能
roamingcode16 分钟前
从混沌到秩序:Git Diff 结构化报告的 Claude Code Skill 实践
人工智能·git·agent·skill·claude code·领域知识包·ai经验复用
天上掉下个牛霸天20 分钟前
2025年十大技术趋势前瞻
人工智能·ai
专注数据的痴汉23 分钟前
「数据获取」内蒙古地理基础数据(道路、水系、四级行政边界、地级城市、DEM等)
大数据·人工智能·信息可视化
aopstudio23 分钟前
HuggingFace Tokenizer 的进化:从分词器到智能对话引擎
人工智能·自然语言处理·llm·huggingface
JQLvopkk24 分钟前
全栈可视化数字孪生开发平台阐述
人工智能·自动化
b***251125 分钟前
动力电池半自动生产线如何平衡自动化投入与规模化需求
人工智能
Hernon25 分钟前
AI智能体 - 优先级排序
大数据·人工智能