【Pytorch实战教程】Pytorch中model.train()和model.eval()的作用

在 PyTorch 中,model.train()model.eval() 用于设置模型的训练模式评估模式,它们的作用主要涉及模型中的特定层如批归一化(Batch Normalization)和丢弃(Dropout)等。

model.train()

当你调用 model.train() 时,你将模型设置为训练模式。这意味着所有的层都会按照训练时的行为来运行。例如:

  • 批归一化层(Batch Normalization):在训练模式下,这些层会正常使用当前批次的均值和方差来归一化输入数据,同时也会更新用于归一化的运行均值和方差。
  • 丢弃层(Dropout):在训练模式下,随机地丢弃一部分网络连接(根据设定的丢弃概率),这是为了防止模型过拟合。

model.eval()

当你调用 model.eval() 时,你将模型设置为评估模式,通常用在验证和测试阶段。这会改变某些层的行为:

  • 批归一化层 :在评估模式下,这些层不会使用当前批次的统计数据,而是使用在训练过程中累积的运行均值和方差来归一化输入,以保证模型输出的一致性。
  • 丢弃层 :在评估模式下,不进行丢弃操作,所有的连接都保持活跃。

使用这两个方法是为了确保模型在训练和评估时能够正确地表现其预期的行为。确保在适当的时候切换这两种模式对于模型性能和效果至关重要。

相关推荐
蹦蹦跳跳真可爱5898 分钟前
Python----NLP自然语言处理(中文分词器--jieba分词器)
开发语言·人工智能·python·自然语言处理·中文分词
蹦蹦跳跳真可爱58917 分钟前
Python----OpenCV(图像分割——彩色图像分割,GrabCut算法分割图像)
开发语言·图像处理·人工智能·python·opencv·计算机视觉
charley.layabox7 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人7 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝9 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z9 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
大知闲闲哟10 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
飞哥数智坊10 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli710 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生
潘达斯奈基~11 小时前
大模型的Temperature、Top-P、Top-K、Greedy Search、Beem Search
人工智能·aigc