【Pytorch实战教程】Pytorch中model.train()和model.eval()的作用

在 PyTorch 中,model.train()model.eval() 用于设置模型的训练模式评估模式,它们的作用主要涉及模型中的特定层如批归一化(Batch Normalization)和丢弃(Dropout)等。

model.train()

当你调用 model.train() 时,你将模型设置为训练模式。这意味着所有的层都会按照训练时的行为来运行。例如:

  • 批归一化层(Batch Normalization):在训练模式下,这些层会正常使用当前批次的均值和方差来归一化输入数据,同时也会更新用于归一化的运行均值和方差。
  • 丢弃层(Dropout):在训练模式下,随机地丢弃一部分网络连接(根据设定的丢弃概率),这是为了防止模型过拟合。

model.eval()

当你调用 model.eval() 时,你将模型设置为评估模式,通常用在验证和测试阶段。这会改变某些层的行为:

  • 批归一化层 :在评估模式下,这些层不会使用当前批次的统计数据,而是使用在训练过程中累积的运行均值和方差来归一化输入,以保证模型输出的一致性。
  • 丢弃层 :在评估模式下,不进行丢弃操作,所有的连接都保持活跃。

使用这两个方法是为了确保模型在训练和评估时能够正确地表现其预期的行为。确保在适当的时候切换这两种模式对于模型性能和效果至关重要。

相关推荐
TMT星球9 分钟前
星动纪元携人形机器人家族亮相CES 2026,海外业务占比达50%
大数据·人工智能·机器人
程序员爱德华17 分钟前
镜面检测 Mirror Detection
人工智能·计算机视觉·语义分割·镜面检测
莫非王土也非王臣36 分钟前
TensorFlow中卷积神经网络相关函数
人工智能·cnn·tensorflow
焦耳热科技前沿36 分钟前
西华大学Adv. Sci.:超高温焦耳热冲击制备拓扑缺陷碳,用于催化碳纳米管可控生长
大数据·人工智能·能源·材料工程·电池
小兔崽子去哪了39 分钟前
机器学习,梯度下降,拟合,正则化,混淆矩阵
python·机器学习
亿坊电商42 分钟前
AI数字人开发框架如何实现多模态交互?
人工智能·交互
GOSIM 全球开源创新汇1 小时前
科班出身+跨界双轨:陈郑豪用 AI 压缩技术,让 4K 游戏走进普通设备|Open AGI Forum
人工智能·游戏·agi
sinat_286945191 小时前
AI Coding LSP
人工智能·算法·prompt·transformer
IT_陈寒1 小时前
Java并发编程实战:从入门到精通的5个关键技巧,让我薪资涨了40%
前端·人工智能·后端
码上宝藏1 小时前
ComfyUI新插件上线!多模态多视角生成,中文场景适配拉满——手把手教你玩转ComfyUI-qwenmultiangle
人工智能·comfyui