【Pytorch实战教程】Pytorch中model.train()和model.eval()的作用

在 PyTorch 中,model.train()model.eval() 用于设置模型的训练模式评估模式,它们的作用主要涉及模型中的特定层如批归一化(Batch Normalization)和丢弃(Dropout)等。

model.train()

当你调用 model.train() 时,你将模型设置为训练模式。这意味着所有的层都会按照训练时的行为来运行。例如:

  • 批归一化层(Batch Normalization):在训练模式下,这些层会正常使用当前批次的均值和方差来归一化输入数据,同时也会更新用于归一化的运行均值和方差。
  • 丢弃层(Dropout):在训练模式下,随机地丢弃一部分网络连接(根据设定的丢弃概率),这是为了防止模型过拟合。

model.eval()

当你调用 model.eval() 时,你将模型设置为评估模式,通常用在验证和测试阶段。这会改变某些层的行为:

  • 批归一化层 :在评估模式下,这些层不会使用当前批次的统计数据,而是使用在训练过程中累积的运行均值和方差来归一化输入,以保证模型输出的一致性。
  • 丢弃层 :在评估模式下,不进行丢弃操作,所有的连接都保持活跃。

使用这两个方法是为了确保模型在训练和评估时能够正确地表现其预期的行为。确保在适当的时候切换这两种模式对于模型性能和效果至关重要。

相关推荐
天天讯通9 分钟前
金融邀约实时质检:呼叫监控赋能客服主管
人工智能·金融
飞Link29 分钟前
深度解析 MSER 最大稳定极值区域算法
人工智能·opencv·算法·计算机视觉
夜勤月44 分钟前
给AI装上“文件之手”:深入解析MCP文件系统服务的安全沙箱与读写实践
人工智能·安全
万物得其道者成1 小时前
UI UX Pro Max: AI 驱动的设计系统生成引擎深度解析
人工智能·ui·ux
码农三叔1 小时前
(3-2)机器人身体结构与人体仿生学:人形机器人躯干系统
人工智能·架构·机器人·人形机器人
bleuesprit1 小时前
LLM语言模型Lora微调
人工智能·语言模型·lora
sunxunyong1 小时前
CC2Github配置
人工智能
B站计算机毕业设计超人1 小时前
计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hadoop·python·机器学习·知识图谱·课程设计
玄同7651 小时前
Python「焚诀」:吞噬所有语法糖的终极修炼手册
开发语言·数据库·人工智能·python·postgresql·自然语言处理·nlp
cdut_suye1 小时前
解锁函数的魔力:Python 中的多值传递、灵活参数与无名之美
java·数据库·c++·人工智能·python·机器学习·热榜