Pytorch笔记(1-5)

张量

张量可以理解为numpy里面的矩阵,可以进行矩阵的操作

张量初始化

python 复制代码
x_data = torch.tensor([[1,2],[2,3]])

模型的建立

首先建立一个单元,在pytorch里面,一个单元就是神经网络的一个节点,前向传播。

一般以一个类定义

python 复制代码
class LearnModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel,self).__init__()# 必须要有
        self.linear = torch.nn.Linear(1,1)# 接受两个参数一个是输入数据的维度,一个是输出数据的维度,这个函数就是求出参数w和b再顺便做好相乘加b
    def forward(self,x):
        y_pred = self.linear(x)# 前向传播
        return y_pred

损失函数和参数更新

python 复制代码
criterion = torch.nn.MSELoss(size_average = True)
# 损失函数,均方根损失函数,接受两个参数,上面这个为True时求均值
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
# 这是一个优化器,就是更新参数的,第一个参数就是你要更新哪些参数,第一个函数可以选择所有的参数,lr就是learn_rate学习率

线性回归

python 复制代码
model = LinearModel()
for epoch in range(100):
    y_pred = model(x_data) # 前向传播获得y的预测值
    loss = criterion(y_pred, y_data) # 求出代价
    optimizer.zero_grad() # 清零梯度
    loss.backward() # 自动计算梯度
    optimizer.step() # 更新w和b的值
相关推荐
落羽凉笙3 小时前
Python学习笔记(3)|数据类型、变量与运算符:夯实基础,从入门到避坑(附图解+代码)
笔记·python·学习
Light603 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升4 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide4 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农4 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews4 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体4 小时前
机器人的罪与罚
人工智能·机器人
三不原则4 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM4 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员5 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构