Pytorch笔记(1-5)

张量

张量可以理解为numpy里面的矩阵,可以进行矩阵的操作

张量初始化

python 复制代码
x_data = torch.tensor([[1,2],[2,3]])

模型的建立

首先建立一个单元,在pytorch里面,一个单元就是神经网络的一个节点,前向传播。

一般以一个类定义

python 复制代码
class LearnModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel,self).__init__()# 必须要有
        self.linear = torch.nn.Linear(1,1)# 接受两个参数一个是输入数据的维度,一个是输出数据的维度,这个函数就是求出参数w和b再顺便做好相乘加b
    def forward(self,x):
        y_pred = self.linear(x)# 前向传播
        return y_pred

损失函数和参数更新

python 复制代码
criterion = torch.nn.MSELoss(size_average = True)
# 损失函数,均方根损失函数,接受两个参数,上面这个为True时求均值
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
# 这是一个优化器,就是更新参数的,第一个参数就是你要更新哪些参数,第一个函数可以选择所有的参数,lr就是learn_rate学习率

线性回归

python 复制代码
model = LinearModel()
for epoch in range(100):
    y_pred = model(x_data) # 前向传播获得y的预测值
    loss = criterion(y_pred, y_data) # 求出代价
    optimizer.zero_grad() # 清零梯度
    loss.backward() # 自动计算梯度
    optimizer.step() # 更新w和b的值
相关推荐
金融小师妹4 分钟前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
代码匠心11 分钟前
Trae IDE 隐藏玩法:接入即梦 AI,生成高质量大片!
人工智能·ai·trae·skills
陈天伟教授17 分钟前
人工智能应用- 语言理解:01. 写作与对话
人工智能·深度学习·语音识别
铁蛋AI编程实战19 分钟前
OpenClaw+Kimi K2.5开源AI助手零门槛部署教程:本地私有化+远程控制+办公自动化全实操
人工智能·开源
liliangcsdn19 分钟前
文本视频音频分块工具 - Semantic Chunkers
人工智能·音视频
OPEN-Source22 分钟前
大模型实战:大模型推理性能优化与成本控制实战
人工智能·性能优化·rag
雨大王51238 分钟前
工业AI+如何赋能汽车供应链智能化升级?
人工智能
彬鸿科技40 分钟前
bhSDR Studio/Matlab 入门指南(三):频谱检测演示界面全解析
人工智能·软件无线电
新缸中之脑42 分钟前
为什么氛围编程有意义
人工智能
rosmis1 小时前
地铁轨道病害检测系统-软件开发日志-2-02
人工智能