基于 PyTorch 的 MNIST数字图像数据集分类模型训练与评估的简单练习

首先,导入需要用到的包。

Python 复制代码
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision.datasets import mnist
from torch import nn
from torch.autograd import Variable
import matplotlib.pyplot as plt

然后构建MNIST数据集数据转换函数,将图像转换为Pytorch能处理的张量。

Python 复制代码
def data_transform(img):
    img= np.array(img, dtype="float") / 255
    img= (img- 0.5) / 0.5
    img= img.reshape((-1))
    img= torch.Tensor(img)
    return img

通过Python下载MNIST数据,构建训练集与测试集,此处"./data2"为数据的存放位置。

Python 复制代码
train_dataset = mnist.MNIST("./data2", train=True, transform=data_transform, download=True)
test_dataset = mnist.MNIST("./data2", train=False, transform=data_transform, download=True)

构建神经网络。由于所采用的MNIST数据集一张图像的大小为28*28,所以设置输入数据时设置28*28=784个输入值,一共有0-9十个数字,所以最终的输出为10个输出值。通过ReLU函数设置如下。

Python 复制代码
net = nn.Sequential(
    nn.Linear(784, 400),
    nn.ReLU(),
    nn.Linear(400, 200),
    nn.ReLU(),
    nn.Linear(200, 100),
    nn.ReLU(),
    nn.Linear(100, 10)
)

然后,构建损失函数与优化器。这里使用交叉熵设置损失函数。

Python 复制代码
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), 1e-1)

创建四个数组用于存放每次处理后的损失值与准确度,以便于图像显示。

Python 复制代码
losses = []
acces = []
eval_losses = []
eval_acces = []

开始训练模型并测试。设置训练准确度与训练损失参数,通过循环遍历每一批数据。在处理一批数据时,首先将图像与标签数据类型转换为张量,然后通过建立的神经网络训练数据并通过损失函数获取损失。接着,将参数的梯度归零,对损失求导并更新参数。其次,将该批次的损失汇总并计算准确度。最后,在完成内循环后将损失与准确度添加到相关数组中用于图像显示。而测试过程与训练过程类似,只是没有求梯度的过程。

Python 复制代码
for e in range(20):
    train_loss = 0
    train_acc = 0
    for im, label in train_dataset:
        im = Variable(im)
        label = Variable(label)
 
        out = net(im)
        loss = criterion(out, label)
 
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
 
        train_loss += loss
        _, pred = out.max(1)
        num_correct = (pred == label).sum()
        acc = num_correct / im.shape[0]
        train_acc += acc
 
    losses.append(train_loss / len(train_dataset))
    acces.append(train_acc / len(train_dataset))
 
    eval_loss = 0
    eval_acc = 0
    for im, label in test_dataset:
        im = Variable(im)
        label = Variable(label)
        out = net(im)
        loss = criterion(out, label)
        eval_loss += loss
        _, pred = out.max(1)
        num_correct = (pred == label).sum()
        acc = num_correct / im.shape[0]
        eval_acc += acc
    eval_losses.append(eval_loss / len(test_dataset))
    eval_acces.append(eval_acc / len(test_dataset))
print("epoch:{},Train Loss:{:.6f},Train acc:{:.6f},Eval Loss:{:.6f},Eval acc:{:.6f}".format(e + 1, train_loss / len(train_dataset),train_acc / len(train_dataset),eval_loss / len(test_dataset),eval_acc / len(test_dataset)))

接下来,将数组中的数据类型从张量转换为可以处理的numpy数据格式。

Python 复制代码
losses = [item.detach().numpy() for item in losses]
acces = [item.detach().numpy() for item in acces]
eval_acces = [item.detach().numpy() for item in eval_acces]
eval_losses = [item.detach().numpy() for item in eval_losses]

最后构建绘图函数并完成绘图。

Python 复制代码
def make_plt(title, list):
    plt.title(title)
    plt.plot(np.arange(len(list)), list)
    plt.show()
 
make_plt("train loss", losses)
make_plt("tain acc", acces)
make_plt("eval loss", eval_losses)
make_plt("eval acc", eval_acces)

最终得到以下四个图像与输出。

Console 复制代码
......
epoch:14,Train Loss:0.019388,Train acc:0.993687,Eval Loss:0.073528,Eval acc:0.980716
epoch:15,Train Loss:0.018121,Train acc:0.994170,Eval Loss:0.075069,Eval acc:0.979727
epoch:16,Train Loss:0.013503,Train acc:0.995436,Eval Loss:0.078196,Eval acc:0.980617
epoch:17,Train Loss:0.012675,Train acc:0.995919,Eval Loss:0.070875,Eval acc:0.981309
epoch:18,Train Loss:0.014213,Train acc:0.995769,Eval Loss:0.076365,Eval acc:0.981408
epoch:19,Train Loss:0.011078,Train acc:0.996335,Eval Loss:0.068176,Eval acc:0.983683
epoch:20,Train Loss:0.006785,Train acc:0.998118,Eval Loss:0.114188,Eval acc:0.974684
相关推荐
矢量赛奇7 分钟前
比ChatGPT更酷的AI工具
人工智能·ai·ai写作·视频
KuaFuAI16 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic25 分钟前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI29 分钟前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海32 分钟前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah33 分钟前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d37 分钟前
边缘计算的学习
人工智能·学习·边缘计算
风之馨技术录41 分钟前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频
sniper_fandc1 小时前
深度学习基础—Seq2Seq模型
人工智能·深度学习
goomind1 小时前
深度学习模型评价指标介绍
人工智能·python·深度学习·计算机视觉