文章目录
-
- [一、关于 LiteLLM🚅](#一、关于 LiteLLM🚅)
- 二、用法
- 三、OpenAI代理
- [四、支持的 Providers](#四、支持的 Providers)
- 五、贡献
一、关于 LiteLLM🚅
使用 OpenAI 格式调用 LLM APIs。 使用 Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate, Groq (100+ LLMs)。
-
github : https://github.com/BerriAI/litellm
-
discord : https://discord.gg/wuPM9dRgDw
LiteLLM 管理一下:
- 将输入转换到提供者的
completion
、embedding
和image_generation
端点 - 一致的输出,文本响应将始终可用在
['choices'][0]['message']['content']
- 跨多个部署 重试/兜底 逻辑(例如Azure/OpenAI)--- 路由器
- 设置每个项目的预算和速率限制,api密钥,模型 OpenAI Proxy Server
🚨**稳定版发布:**使用带有-stable
标签的docker镜像。这些镜像在发布之前经过了12小时的负载测试。
支持更多提供者。缺少提供者或LLM平台,提出特征请求。
企业级
对于需要更好的安全性、用户管理和专业支持的公司
这包括:
- ✅LiteLLM商业许可下的功能:
- ✅特征优先级
- ✅自定义集成
- ✅专业支持-专门的不和谐+松弛
- ✅自定义SLA
- ✅单点登录的安全访问
我们为什么要建造这个?
- 需要简单:我们的代码开始变得极其复杂,在Azure、OpenAI和Cohere之间管理和转换调用。
二、用法
重要提示:
LiteLLM v1.0.0现在需要openai>=1.0.0
。迁移指南在这里
LiteLLM v1.40.14+现在需要pydantic>=2.0.0
。无需更改。
安装
shell
pip install litellm
python
from litellm import completion
import os
***
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["COHERE_API_KEY"] = "your-cohere-key"
messages = [{ "content": "Hello, how are you?","role": "user"}]
# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)
# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)
使用 model=<provider_name>/<model_name>
调用提供程序支持的任何模型。
这里可能有特定于提供程序的详细信息,因此详情可见 provider docs for more information。
异步
详见文档:https://docs.litellm.ai/docs/completion/stream#async-completion
python
from litellm import acompletion
import asyncio
async def test_get_response():
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
response = await acompletion(model="gpt-3.5-turbo", messages=messages)
return response
response = asyncio.run(test_get_response())
print(response)
流
详见文档:https://docs.litellm.ai/docs/completion/stream
LiteLLM支持流式传输模型响应,传递stream=True
以获得流式迭代器响应。
所有模型都支持流式传输(Bedrock、Huggingface、ToketherAI、Azure、OpenAI等)
python
from litellm import completion
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
print(part.choices[0].delta.content or "")
# claude 2
response = completion('claude-2', messages, stream=True)
for part in response:
print(part.choices[0].delta.content or "")
日志可观测性
详见文档:https://docs.litellm.ai/docs/observability/callbacks
LiteLLM公开预定义的回调以将数据发送到Lunary、Langfuse、DynamoDB、s3 Buckets、Helicone、Prompttier、Traceloop、Athina、Slack
python
from litellm import completion
***
## set env variables for logging tools
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"
os.environ["HELICONE_API_KEY"] = "your-helicone-auth-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["ATHINA_API_KEY"] = "your-athina-api-key"
os.environ["OPENAI_API_KEY"]
# set callbacks
litellm.success_callback = ["lunary", "langfuse", "athina", "helicone"] # log input/output to lunary, langfuse, supabase, athina, helicone etc
#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
三、OpenAI代理
详见文档:https://docs.litellm.ai/docs/simple_proxy
跨多个项目跟踪支出+负载平衡
代理提供:
📖代理端点
详见 Swagger Docs : https://litellm-api.up.railway.app/
快速启动代理-CLI
shell
pip install 'litellm[proxy]'
第1步:启动litellm代理
shell
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:4000
第2步:向代理发出ChatCompletions请求
python
import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
代理密钥管理
详见:https://docs.litellm.ai/docs/proxy/virtual_keys
将代理与Postgres DB连接以创建代理密钥
shell
# Get the code
git clone https://github.com/BerriAI/litellm
# Go to folder
cd litellm
# Add the master key - you can change this after setup
echo 'LITELLM_MASTER_KEY="sk-1234"' > .env
# Add the litellm salt key - you cannot change this after adding a model
# It is used to encrypt / decrypt your LLM API Key credentials
# We recommned - https://1password.com/password-generator/
# password generator to get a random hash for litellm salt key
echo 'LITELLM_SALT_KEY="sk-1234"' > .env
source .env
# Start
docker-compose up
UI on /ui
on your proxy server
跨多个项目设置预算和费率限制 POST /key/generate
请求
shell
curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "ishaan@berri.ai", "team": "core-infra"}}'
预期反应
json
{
"key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
"expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}
四、支持的 Providers
详见文档: https://docs.litellm.ai/docs/providers
Provider | Completion | Streaming | Async Completion | Async Streaming | Async Embedding | Async Image Generation |
---|---|---|---|---|---|---|
openai | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
azure | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
aws - sagemaker | ✅ | ✅ | ✅ | ✅ | ✅ | |
aws - bedrock | ✅ | ✅ | ✅ | ✅ | ✅ | |
google - vertex_ai | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
google - palm | ✅ | ✅ | ✅ | ✅ | ||
google AI Studio - gemini | ✅ | ✅ | ✅ | ✅ | ||
mistral ai api | ✅ | ✅ | ✅ | ✅ | ✅ | |
cloudflare AI Workers | ✅ | ✅ | ✅ | ✅ | ||
cohere | ✅ | ✅ | ✅ | ✅ | ✅ | |
anthropic | ✅ | ✅ | ✅ | ✅ | ||
empower | ✅ | ✅ | ✅ | ✅ | ||
huggingface | ✅ | ✅ | ✅ | ✅ | ✅ | |
replicate | ✅ | ✅ | ✅ | ✅ | ||
together_ai | ✅ | ✅ | ✅ | ✅ | ||
openrouter | ✅ | ✅ | ✅ | ✅ | ||
ai21 | ✅ | ✅ | ✅ | ✅ | ||
baseten | ✅ | ✅ | ✅ | ✅ | ||
vllm | ✅ | ✅ | ✅ | ✅ | ||
nlp_cloud | ✅ | ✅ | ✅ | ✅ | ||
aleph alpha | ✅ | ✅ | ✅ | ✅ | ||
petals | ✅ | ✅ | ✅ | ✅ | ||
ollama | ✅ | ✅ | ✅ | ✅ | ✅ | |
deepinfra | ✅ | ✅ | ✅ | ✅ | ||
perplexity-ai | ✅ | ✅ | ✅ | ✅ | ||
Groq AI | ✅ | ✅ | ✅ | ✅ | ||
Deepseek | ✅ | ✅ | ✅ | ✅ | ||
anyscale | ✅ | ✅ | ✅ | ✅ | ||
IBM - watsonx.ai | ✅ | ✅ | ✅ | ✅ | ✅ | |
voyage ai | ✅ | |||||
[xinference Xorbits Inference] | ✅ | |||||
FriendliAI | ✅ | ✅ | ✅ | ✅ |
五、贡献
贡献:在本地克隆repo->进行更改->提交带有更改的PR。
以下是如何在本地修改repo:
第1步:克隆repo
shell
git clone https://github.com/BerriAI/litellm.git
第2步:导航到项目中,并安装依赖项:
shell
cd litellm
poetry install -E extra_proxy -E proxy
第3步:测试您的更改:
shell
cd litellm/tests # pwd: Documents/litellm/litellm/tests
poetry run flake8
poetry run pytest .
第4步:提交包含更改的PR!🚀
- 将您的fork推送到您的GitHub存储库
- 从那里提交PR
2024-07-25(四)