神经网络实现数字识别(机器学习)

我们有很多0到9的图片集,我们要训练一个网络来自动识别数字,我们有20*20的图像5000个。

把图片展平,这样每个记录就有400个特征,最后一列是标签值,1-9表示数字1-9;10表示数字0。数据集:ex_2/ex3data1.mat · Orange_Xiao/Machine_Learning - 码云 - 开源中国 (gitee.com)

Onehot-编码介绍

首先我们需要将y设置为One-hot编码。

下面是数据y。我们可以看出,第一行的是10,也对应着0。我们需要把第一行转化为[1,0,0,...0]。

即原来5000*1的矩阵转化为5000*10的矩阵。

array([

[10]

[9]

[8]

])

我们需要将上面转化为

每个样本中的单个特征只有1位处于状态1,其他都处于0。上面那个就代表数字1。1在哪个位置就代表哪个标签。

导入数据

python 复制代码
import pandas as pd
import numpy as np
import scipy.io as sio
import matplotlib
from skimage import transform
from PIL import Image
from scipy.optimize import minimize

matplotlib.use('tkAgg')
import matplotlib.pyplot as plt

file_path = "D:\\JD\\Documents\\大学等等等\\自学部分\\机器学习自学画图\\手写数字识别\\ex3data1.mat"
data = sio.loadmat(file_path)
row_X = data['X']
row_y = data['y']
print("-------------------------------------------------")
print(row_X.shape, row_y.shape)

(5000, 400) (5000, 1)

下面说如何讲y转化乘OneHot编码:

我们可以导入一个库。

python 复制代码
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse_output=False)#不使用稀疏形式
y_onehot  = encoder.fit_transform(row_y)
print(y_onehot.shape)
print(y_onehot[0])

(5000, 10)

[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]

网络结构

再来一个更加直观的图:

输入:

修改:

代价函数

注意基本上机器学习的代价函数都是要表示出:"预测值与真实值"之间的差距。

于是我们有:

python 复制代码
def sigmoid(z):
    return 1 / (1 + np.exp(-z))


def forward_propagate(X, theta1, theta2):
    m = X.shape[0]
    a1 = np.insert(X, 0, values=np.ones(m), axis=1)  # 多加一列,用于与theta中的常数相乘
    z2 = a1 * theta1.T
    a2 = np.insert(z2, 0, values=np.ones(m), axis=1)
    z3 = a2 * theta2.T
    h = sigmoid(z3)
    return a1, z2, a2, z3, h


def cost(params, input_size, hidden_size, num_labels, X, y, lamda):
    m = X.shape[0]
    X = np.matrix(X)
    y = np.matrix(y)
    theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
    theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
    a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
    J = 0
    for i in range(m):
        first_item = np.multiply(-y[i, :], np.log(h[i, :]))
        second_item = np.multiply((1 - y[i,:]), np.log(1 - h[i,:]))
        J += np.sum(first_item - second_item)
    J = J / m

    J += (float(lamda) / (2 * m)) * (np.sum(np.power(theta1[:, 1:], 2)) + np.sum(np.power(theta2[:, 1:], 2)))
    return J


input_size = 400
hidden_size = 25
num_labels = 10
lamda = 1
params = (np.random.random(size=hidden_size * (input_size + 1) + num_labels * (hidden_size + 1)) - 0.5) * 0.25
m = X.shape[0]
X = np.matrix(X)
y = np.matrix(y)

theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))

print(theta1.shape, theta1.shape)

print(cost(params, input_size, hidden_size, num_labels, X, y_onehot, lamda))

计算梯度

我们现在规定

表示第t条数据的a1。

假如损失函数对的梯度叫

特别注意:当有

python 复制代码
def sigmoid_gradient(z):
    return np.multiply(sigmoid(z), (1 - sigmoid(z)))


def backprop(params, input_size, hidden_size, num_labels, X, y, lamda):
    m = X.shape[0]
    X = np.matrix(X)
    y = np.matrix(y)
    theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
    theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
    a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
    J = 0
    delta1 = np.zeros(theta1.shape)
    delta2 = np.zeros(theta2.shape)
    for i in range(m):
        first_term = np.multiply(-y[i, :], np.log(h[i, :] ))
        second_term = np.multiply((1 - y[i, :]), np.log(1 - h[i, :] ))
        J += np.sum(first_term - second_term)
    J = J / m

    for t in range(m):
        a1t = a1[t, :]
        z2t = z2[t, :]
        a2t = a2[t, :]
        ht = h[t, :]
        yt = y[t, :]
        d3t = ht - yt
        z2t = np.insert(z2t, 0, values=np.ones(1))
        d2t = np.multiply((theta2.T * d3t.T).T, sigmoid_gradient(z2t))
        delta1 = delta1 + (d2t[:, 1:]).T * a1t
        delta2 = delta2 + d3t.T * a2t

    delta1[:, 1:] = delta1[:, 1:] + (theta1[:, 1:] * lamda) / m
    delta2[:, 1:] = delta2[:, 1:] + (theta2[:, 1:] * lamda) / m
    grad = np.concatenate((np.ravel(delta1), np.ravel(delta2)))

    return J, grad


J, grad = backprop(params, input_size, hidden_size, num_labels, X, y_onehot, lamda)

print("+++++++++++++++++++++++++++++++")
print(J, grad.shape)

fmin = minimize(fun=backprop, x0=params, args=(input_size, hidden_size, num_labels, X, y_onehot, lamda),
                method='TNC', jac=True, options={'maxiter': 250})
print((fmin))
相关推荐
AL.千灯学长17 分钟前
DeepSeek接入Siri(已升级支持苹果手表)完整版硅基流动DeepSeek-R1部署
人工智能·gpt·ios·ai·苹果vision pro
LCG元1 小时前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
lihuayong1 小时前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨1 小时前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡1 小时前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河1 小时前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-14551 小时前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt
終不似少年遊*1 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
杜大哥2 小时前
如何在WPS打开的word、excel文件中,使用AI?
人工智能·word·excel·wps
Leiditech__2 小时前
人工智能时代电子机器人静电问题及电路设计防范措施
人工智能·嵌入式硬件·机器人·硬件工程