神经网络实现数字识别(机器学习)

我们有很多0到9的图片集,我们要训练一个网络来自动识别数字,我们有20*20的图像5000个。

把图片展平,这样每个记录就有400个特征,最后一列是标签值,1-9表示数字1-9;10表示数字0。数据集:ex_2/ex3data1.mat · Orange_Xiao/Machine_Learning - 码云 - 开源中国 (gitee.com)

Onehot-编码介绍

首先我们需要将y设置为One-hot编码。

下面是数据y。我们可以看出,第一行的是10,也对应着0。我们需要把第一行转化为[1,0,0,...0]。

即原来5000*1的矩阵转化为5000*10的矩阵。

array([

10

9

8

])

我们需要将上面转化为

每个样本中的单个特征只有1位处于状态1,其他都处于0。上面那个就代表数字1。1在哪个位置就代表哪个标签。

导入数据

python 复制代码
import pandas as pd
import numpy as np
import scipy.io as sio
import matplotlib
from skimage import transform
from PIL import Image
from scipy.optimize import minimize

matplotlib.use('tkAgg')
import matplotlib.pyplot as plt

file_path = "D:\\JD\\Documents\\大学等等等\\自学部分\\机器学习自学画图\\手写数字识别\\ex3data1.mat"
data = sio.loadmat(file_path)
row_X = data['X']
row_y = data['y']
print("-------------------------------------------------")
print(row_X.shape, row_y.shape)

(5000, 400) (5000, 1)

下面说如何讲y转化乘OneHot编码:

我们可以导入一个库。

python 复制代码
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse_output=False)#不使用稀疏形式
y_onehot  = encoder.fit_transform(row_y)
print(y_onehot.shape)
print(y_onehot[0])

(5000, 10)

0. 0. 0. 0. 0. 0. 0. 0. 0. 1.

网络结构

再来一个更加直观的图:

输入:

修改:

代价函数

注意基本上机器学习的代价函数都是要表示出:"预测值与真实值"之间的差距。

于是我们有:

python 复制代码
def sigmoid(z):
    return 1 / (1 + np.exp(-z))


def forward_propagate(X, theta1, theta2):
    m = X.shape[0]
    a1 = np.insert(X, 0, values=np.ones(m), axis=1)  # 多加一列,用于与theta中的常数相乘
    z2 = a1 * theta1.T
    a2 = np.insert(z2, 0, values=np.ones(m), axis=1)
    z3 = a2 * theta2.T
    h = sigmoid(z3)
    return a1, z2, a2, z3, h


def cost(params, input_size, hidden_size, num_labels, X, y, lamda):
    m = X.shape[0]
    X = np.matrix(X)
    y = np.matrix(y)
    theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
    theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
    a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
    J = 0
    for i in range(m):
        first_item = np.multiply(-y[i, :], np.log(h[i, :]))
        second_item = np.multiply((1 - y[i,:]), np.log(1 - h[i,:]))
        J += np.sum(first_item - second_item)
    J = J / m

    J += (float(lamda) / (2 * m)) * (np.sum(np.power(theta1[:, 1:], 2)) + np.sum(np.power(theta2[:, 1:], 2)))
    return J


input_size = 400
hidden_size = 25
num_labels = 10
lamda = 1
params = (np.random.random(size=hidden_size * (input_size + 1) + num_labels * (hidden_size + 1)) - 0.5) * 0.25
m = X.shape[0]
X = np.matrix(X)
y = np.matrix(y)

theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))

print(theta1.shape, theta1.shape)

print(cost(params, input_size, hidden_size, num_labels, X, y_onehot, lamda))

计算梯度

我们现在规定

表示第t条数据的a1。

假如损失函数对的梯度叫

特别注意:当有

python 复制代码
def sigmoid_gradient(z):
    return np.multiply(sigmoid(z), (1 - sigmoid(z)))


def backprop(params, input_size, hidden_size, num_labels, X, y, lamda):
    m = X.shape[0]
    X = np.matrix(X)
    y = np.matrix(y)
    theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1))))
    theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1))))
    a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2)
    J = 0
    delta1 = np.zeros(theta1.shape)
    delta2 = np.zeros(theta2.shape)
    for i in range(m):
        first_term = np.multiply(-y[i, :], np.log(h[i, :] ))
        second_term = np.multiply((1 - y[i, :]), np.log(1 - h[i, :] ))
        J += np.sum(first_term - second_term)
    J = J / m

    for t in range(m):
        a1t = a1[t, :]
        z2t = z2[t, :]
        a2t = a2[t, :]
        ht = h[t, :]
        yt = y[t, :]
        d3t = ht - yt
        z2t = np.insert(z2t, 0, values=np.ones(1))
        d2t = np.multiply((theta2.T * d3t.T).T, sigmoid_gradient(z2t))
        delta1 = delta1 + (d2t[:, 1:]).T * a1t
        delta2 = delta2 + d3t.T * a2t

    delta1[:, 1:] = delta1[:, 1:] + (theta1[:, 1:] * lamda) / m
    delta2[:, 1:] = delta2[:, 1:] + (theta2[:, 1:] * lamda) / m
    grad = np.concatenate((np.ravel(delta1), np.ravel(delta2)))

    return J, grad


J, grad = backprop(params, input_size, hidden_size, num_labels, X, y_onehot, lamda)

print("+++++++++++++++++++++++++++++++")
print(J, grad.shape)

fmin = minimize(fun=backprop, x0=params, args=(input_size, hidden_size, num_labels, X, y_onehot, lamda),
                method='TNC', jac=True, options={'maxiter': 250})
print((fmin))
相关推荐
~kiss~9 分钟前
图像处理之膨胀
图像处理·人工智能·计算机视觉
科兽的AI小记31 分钟前
市面上的开源 AI 智能体平台使用体验
人工智能·源码·创业
云雾J视界1 小时前
开源协作2.0:GitHub Discussions+AI重构开发者社区的知识共创生态
人工智能·开源·github·discussions·知识共创·社区知识·ai重构
橘子海全栈攻城狮1 小时前
【源码+文档+调试讲解】基于SpringBoot + Vue的知识产权管理系统 041
java·vue.js·人工智能·spring boot·后端·安全·spring
赋范大模型技术社区1 小时前
OpenAI Agent Kit 全网首发深度解读与上手指南
人工智能·workflow·内置评估
阿里云大数据AI技术1 小时前
云栖实录 | AI 搜索智能探索:揭秘如何让搜索“有大脑”
人工智能·搜索引擎
可触的未来,发芽的智生1 小时前
新奇特:神经网络速比器,小镇债务清零的算法奇缘
javascript·人工智能·python
Aaplloo1 小时前
机器学习作业七
人工智能·机器学习
2501_906519671 小时前
面向边缘计算的轻量化神经网络架构设计与优化
人工智能
mortimer1 小时前
还在被 Windows 路径的大小写和正反斜杠坑?是时候让 pathlib 拯救你的代码了!
人工智能·python