opencv grabCut前景后景分割去除背景

参考:

https://zhuanlan.zhihu.com/p/523954762

https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html

环境本次:

python 3.10

提取前景:

1、需要先把前景物体框出来

需要坐标信息,可以用windows自带的画图简单提取像素

矩形的格式为 (x, y, width, height)

rect = (118, 120, 732, 835)

定义了一个矩形区域,该区域用于初始化 GrabCut 算法。这个矩形区域的参数表示:

118:矩形左上角的 x 坐标。

120:矩形左上角的 y 坐标。

732:矩形的宽度。

835:矩形的高度。

因此,这个矩形从图像的坐标 (118, 120) 开始,宽度为 732 像素,高度为 835 像素。

2、完整代码

bash 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread(r"C:\Users***\long.png")

# 创建一个与图像大小相同的掩码
mask = np.zeros(image.shape[:2], np.uint8)

# 创建两个数组,用于存储算法内部使用的临时数组
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)

# 定义一个矩形区域,该区域包含我们想要分割的前景物体
# 矩形的格式为 (x, y, width, height)
rect = (118, 120, 732, 835)

# 应用 GrabCut 算法
cv2.grabCut(image, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)

# 创建一个新的掩码,将可能的前景和确定的前景合并
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')

# 将掩码应用于图像
result = image * mask2[:, :, np.newaxis]

# 显示原始图像和分割结果
plt.subplot(121), plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
plt.title('Segmented Image'), plt.xticks([]), plt.yticks([])
plt.show()
相关推荐
中科天工4 分钟前
当智能包装行业迎来新机遇,如何驾驭发展趋势?
大数据·人工智能·智能
BBTSOH159015160447 分钟前
VR每日热点简报2026.1.23
人工智能·vr·人形机器人·动作捕捉·机械手·遥操作·数据手套
快降重科研小助手19 分钟前
文科论述深度改写|挑战哲学论述文,“快降重”如何应对思辨文本?
人工智能·经验分享·aigc·ai写作·降重·降ai率
LASDAaaa123122 分钟前
【计算机视觉】基于Mask R-CNN的自动扶梯缺陷检测方法实现
计算机视觉·r语言·cnn
wan9zhixin22 分钟前
2026年1月变电设备六氟化硫泄漏检测仪品牌推荐
大数据·网络·人工智能
bst@微胖子26 分钟前
LlamaIndex之Workflow工作流案例
人工智能·机器学习
栗少1 小时前
雅思口语高分进阶:从“中式表达”到“母语者逻辑”的深度重构
人工智能
落雨盛夏1 小时前
深度学习|李哥考研2
人工智能·深度学习
美狐美颜sdk1 小时前
人脸美型美颜SDK在直播平台中的实现方式与开发策略
人工智能·音视频·美颜sdk·视频美颜sdk·美狐美颜sdk
zpedu1 小时前
软考想一次过,有一个学习衡量标准吗?
人工智能·笔记