opencv grabCut前景后景分割去除背景

参考:

https://zhuanlan.zhihu.com/p/523954762

https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html

环境本次:

python 3.10

提取前景:

1、需要先把前景物体框出来

需要坐标信息,可以用windows自带的画图简单提取像素

矩形的格式为 (x, y, width, height)

rect = (118, 120, 732, 835)

定义了一个矩形区域,该区域用于初始化 GrabCut 算法。这个矩形区域的参数表示:

118:矩形左上角的 x 坐标。

120:矩形左上角的 y 坐标。

732:矩形的宽度。

835:矩形的高度。

因此,这个矩形从图像的坐标 (118, 120) 开始,宽度为 732 像素,高度为 835 像素。

2、完整代码

bash 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread(r"C:\Users***\long.png")

# 创建一个与图像大小相同的掩码
mask = np.zeros(image.shape[:2], np.uint8)

# 创建两个数组,用于存储算法内部使用的临时数组
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)

# 定义一个矩形区域,该区域包含我们想要分割的前景物体
# 矩形的格式为 (x, y, width, height)
rect = (118, 120, 732, 835)

# 应用 GrabCut 算法
cv2.grabCut(image, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)

# 创建一个新的掩码,将可能的前景和确定的前景合并
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')

# 将掩码应用于图像
result = image * mask2[:, :, np.newaxis]

# 显示原始图像和分割结果
plt.subplot(121), plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
plt.title('Segmented Image'), plt.xticks([]), plt.yticks([])
plt.show()
相关推荐
YMWM_15 分钟前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐30 分钟前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai1 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_948120151 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。1 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习
杀生丸学AI1 小时前
【物理重建】PPISP :辐射场重建中光度变化的物理合理补偿与控制
人工智能·大模型·aigc·三维重建·世界模型·逆渲染
vlln1 小时前
【论文速读】递归语言模型 (Recursive Language Models): 将上下文作为环境的推理范式
人工智能·语言模型·自然语言处理
春日见1 小时前
如何避免代码冲突,拉取分支
linux·人工智能·算法·机器学习·自动驾驶
龙腾AI白云1 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·数据挖掘
人工智能培训2 小时前
大模型训练数据版权与知识产权问题的解决路径
人工智能·大模型·数字化转型·大模型算法·大模型应用工程师