opencv grabCut前景后景分割去除背景

参考:

https://zhuanlan.zhihu.com/p/523954762

https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html

环境本次:

python 3.10

提取前景:

1、需要先把前景物体框出来

需要坐标信息,可以用windows自带的画图简单提取像素

矩形的格式为 (x, y, width, height)

rect = (118, 120, 732, 835)

定义了一个矩形区域,该区域用于初始化 GrabCut 算法。这个矩形区域的参数表示:

118:矩形左上角的 x 坐标。

120:矩形左上角的 y 坐标。

732:矩形的宽度。

835:矩形的高度。

因此,这个矩形从图像的坐标 (118, 120) 开始,宽度为 732 像素,高度为 835 像素。

2、完整代码

bash 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread(r"C:\Users***\long.png")

# 创建一个与图像大小相同的掩码
mask = np.zeros(image.shape[:2], np.uint8)

# 创建两个数组,用于存储算法内部使用的临时数组
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)

# 定义一个矩形区域,该区域包含我们想要分割的前景物体
# 矩形的格式为 (x, y, width, height)
rect = (118, 120, 732, 835)

# 应用 GrabCut 算法
cv2.grabCut(image, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)

# 创建一个新的掩码,将可能的前景和确定的前景合并
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')

# 将掩码应用于图像
result = image * mask2[:, :, np.newaxis]

# 显示原始图像和分割结果
plt.subplot(121), plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
plt.title('Segmented Image'), plt.xticks([]), plt.yticks([])
plt.show()
相关推荐
上进小菜猪4 小时前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩4 小时前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方4 小时前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
木头左5 小时前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
找方案5 小时前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
亚马逊云开发者5 小时前
让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践
人工智能
腾讯WeTest5 小时前
「低成本、高质高效」WeTest AI翻译限时免费
人工智能
Lucas555555555 小时前
现代C++四十不惑:AI时代系统软件的基石与新征程
开发语言·c++·人工智能
言之。5 小时前
Claude Code 专业教学文档
人工智能
Fuly10245 小时前
大模型架构理解与学习
人工智能·语言模型