opencv grabCut前景后景分割去除背景

参考:

https://zhuanlan.zhihu.com/p/523954762

https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html

环境本次:

python 3.10

提取前景:

1、需要先把前景物体框出来

需要坐标信息,可以用windows自带的画图简单提取像素

矩形的格式为 (x, y, width, height)

rect = (118, 120, 732, 835)

定义了一个矩形区域,该区域用于初始化 GrabCut 算法。这个矩形区域的参数表示:

118:矩形左上角的 x 坐标。

120:矩形左上角的 y 坐标。

732:矩形的宽度。

835:矩形的高度。

因此,这个矩形从图像的坐标 (118, 120) 开始,宽度为 732 像素,高度为 835 像素。

2、完整代码

bash 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread(r"C:\Users***\long.png")

# 创建一个与图像大小相同的掩码
mask = np.zeros(image.shape[:2], np.uint8)

# 创建两个数组,用于存储算法内部使用的临时数组
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)

# 定义一个矩形区域,该区域包含我们想要分割的前景物体
# 矩形的格式为 (x, y, width, height)
rect = (118, 120, 732, 835)

# 应用 GrabCut 算法
cv2.grabCut(image, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)

# 创建一个新的掩码,将可能的前景和确定的前景合并
mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')

# 将掩码应用于图像
result = image * mask2[:, :, np.newaxis]

# 显示原始图像和分割结果
plt.subplot(121), plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
plt.title('Segmented Image'), plt.xticks([]), plt.yticks([])
plt.show()
相关推荐
大闲在人5 分钟前
10. 配送中心卡车卸货流程分析:产能利用率与利特尔法则的实践应用
人工智能·供应链管理·智能制造·工业工程
woshikejiaih5 分钟前
**播客听书与有声书区别解析2026指南,适配不同场景的音频
大数据·人工智能·python·音视频
qq7422349848 分钟前
APS系统与OR-Tools完全指南:智能排产与优化算法实战解析
人工智能·算法·工业·aps·排程
兜兜转转了多少年9 分钟前
从脚本到系统:2026 年 AI 代理驱动的 Shell 自动化
运维·人工智能·自动化
LLWZAI13 分钟前
十分钟解决朱雀ai检测,AI率为0%
人工智能
无忧智库13 分钟前
某市“十五五“智慧气象防灾减灾精准预报系统建设方案深度解读 | 从“看天吃饭“到“知天而作“的数字化转型之路(WORD)
大数据·人工智能
方见华Richard13 分钟前
方见华个人履历|中英双语版
人工智能·经验分享·交互·原型模式·空间计算
凤希AI伴侣14 分钟前
凤希AI伴侣:一人成军的工具哲学与全模态内容实践-2026年2月7日
人工智能·凤希ai伴侣
Sagittarius_A*15 分钟前
特征检测:SIFT 与 SURF(尺度不变 / 加速稳健特征)【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉·surf·sift
FserSuN31 分钟前
2026年AI工程师指南
人工智能