《昇思 25 天学习打卡营第 21 天 | LSTM+CRF序列标注模型实现 》

《昇思 25 天学习打卡营第 21 天 | LSTM+CRF序列标注模型实现 》

活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp

签名:Sam9029


序列标注问题概述

序列标注是信息抽取中的一个关键任务,包括分词、词性标注、命名实体识别等。例如,在命名实体识别中,需要识别文本中的地名、人名等实体。

BIOE标注体系

  • B: 表示实体的开始。
  • I: 表示实体的中间部分。
  • E: 表示实体的结束。
  • O: 表示非实体。

条件随机场(CRF)

CRF是一种适合序列标注的概率图模型,能够捕捉标签之间的依赖关系。

线性链CRF

线性链CRF考虑序列中每个Token的标签,并使用发射概率和转移概率来计算整个序列的得分。

实验环境配置

确保安装了MindSpore框架,用于模型的构建和训练。

shell 复制代码
!pip install mindspore==2.2.14 -i https://pypi.mirrors.ustc.edu.cn/simple

模型构建

定义CRF层

CRF层的实现包括前向训练部分和解码部分。

python 复制代码
class CRF(nn.Cell):
    def init(self, num_tags: int, batch_first: bool = False, reduction: str = 'sum'):
        # 初始化CRF层参数
        # ...

    def construct(self, emissions, tags=None, seq_length=None):
        # 根据传入的emissions和tags决定是前向计算还是解码
        # ...

BiLSTM+CRF模型

使用双向LSTM提取序列特征,然后通过Dense层和CRF层进行序列标注。

python 复制代码
class BiLSTM_CRF(nn.Cell):
    def init(self, vocab_size, embedding_dim, hidden_dim, num_tags, padding_idx=0):
        # 初始化模型参数
        # ...

    def construct(self, inputs, seq_length, tags=None):
        # 前向传播过程
        # ...

数据准备

准备训练数据,包括输入序列、对应的标签和序列长度。

python 复制代码
training_data = [
    # 示例句子和标签
]
word_to_idx = {word: idx for word, idx in enumerate(vocab)}
tag_to_idx = {tag: idx for tag, idx in enumerate(tags)}

训练模型

实例化模型和优化器,然后进行训练。

python 复制代码
model = BiLSTM_CRF(len(word_to_idx), embedding_dim, hidden_dim, len(tag_to_idx))
optimizer = nn.SGD(model.trainable_params(), learning_rate=0.01, weight_decay=1e-4)

训练步骤

定义训练步骤,包括前向传播、损失计算和反向传播。

python 复制代码
def train_step(data, seq_length, label):
    loss, grads = grad_fn(data, seq_length, label)
    optimizer(grads)
    return loss

训练过程

使用tqdm库可视化训练过程,并迭代指定的步数。

python 复制代码
for i in tqdm(range(steps)):
    loss = train_step(data, seq_length, label)

模型推理

使用训练好的模型进行推理,获取预测的标签序列。

python 复制代码
predict = post_decode(score, history, seq_length)
predicted_tags = sequence_to_tag(predict, idx_to_tag)

思考

在实现LSTM+CRF模型时,CRF层的设计是关键,它需要考虑序列的真实长度和填充问题。此外,Viterbi算法在解码过程中的应用对于找到最优标签序列至关重要。

模型的训练过程中,优化器的选择和学习率的调整对模型性能有显著影响。在本例中,使用SGD优化器,但实际应用中可能需要尝试不同的优化器和超参数。

最后,模型的评估和迭代是提高性能的重要步骤。在实际项目中,可能需要根据验证集上的性能反馈进行多次迭代和调整。

相关推荐
Larry_Yanan1 天前
QML学习笔记(四十二)QML的MessageDialog
c++·笔记·qt·学习·ui
爱喝白开水a1 天前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void1 天前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG1 天前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
生命是有光的1 天前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型1 天前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全
能不能别报错1 天前
K8s学习笔记(十九) K8s资源限制
笔记·学习·kubernetes
科技新知1 天前
大厂AI各走“开源”路
人工智能·开源
字节数据平台1 天前
火山引擎Data Agent再拓新场景,重磅推出用户研究Agent
大数据·人工智能·火山引擎
TGITCIC1 天前
LLaVA-OV:开源多模态的“可复现”革命,不只是又一个模型
人工智能·开源·多模态·ai大模型·开源大模型·视觉模型·大模型ai