【深度学习】【模型训练】输出轮数卡住不动【解决方案】

一、问题描述

如下图,笔者最近做一个Python深度学习项目时,输出迭代轮数时卡住:

如上图中所示,设置每10轮输出一次损失,相关参考代码如下:

python 复制代码
# run style transfer
max_iter = 200  # 最大迭代次数
show_iter = 10  # 打印间隔
python 复制代码
while n_iter[0] <= max_iter:

    def closure():
        optimizer.zero_grad()

        out = extract_layers(loss_layers, opt_img, model=vgg)
        layer_losses = [weights[a] * loss_fns[a](A, targets[a]) for a, A in enumerate(out)]
        loss = sum(layer_losses)
        loss.backward()
        n_iter[0] += 1
        # print loss
        if n_iter[0] % show_iter == (show_iter - 1):
            # show_iter = 10    9
            # 9, 19, 29, 39, 49
            print('Iteration: %d, loss: %f' % (n_iter[0] + 1, loss.data))

        return losswhile n_iter[0] <= max_iter:

    def closure():
        optimizer.zero_grad()

        out = extract_layers(loss_layers, opt_img, model=vgg)
        layer_losses = [weights[a] * loss_fns[a](A, targets[a]) for a, A in enumerate(out)]
        loss = sum(layer_losses)
        loss.backward()
        n_iter[0] += 1
        # print loss
        if n_iter[0] % show_iter == (show_iter - 1):
            # show_iter = 10    9
            # 9, 19, 29, 39, 49
            print('Iteration: %d, loss: %f' % (n_iter[0] + 1, loss.data))

        return loss

(代码参考书目:《Pytorch深度学习》,【印度】Vishnu Subramanian 著,王海玲 刘江峰 译,人民邮电出版社,北京,2019年4月)

二、解决方案

原本以为是代码运行过程中出现了问题,其实是Windows Powershell终端自身显示的问题。此时,按一次(注意仅一次Ctrl+C组合键,补全显示即可。(按两次会中止程序)。正确运行截图:

相关推荐
renhongxia13 分钟前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
民乐团扒谱机11 分钟前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳
不惑_23 分钟前
通俗理解GAN的训练过程
人工智能·神经网络·生成对抗网络
OpenCSG1 小时前
对比分析:CSGHub vs. Hugging Face:模型管理平台选型对
人工智能·架构·开源
云上凯歌1 小时前
传统老旧系统的“AI 涅槃”:从零构建企业级 Agent 集群实战指南
人工智能
cskywit1 小时前
破解红外“魅影”难题:WMRNet 如何以频率分析与二阶差分重塑小目标检测?
人工智能·深度学习
无名修道院2 小时前
AI大模型应用开发-RAG 基础:向量数据库(FAISS/Milvus)、文本拆分、相似性搜索(“让模型查资料再回答”)
人工智能·向量数据库·rag·ai大模型应用开发
自可乐2 小时前
Milvus向量数据库/RAG基础设施学习教程
数据库·人工智能·python·milvus
旅途中的宽~2 小时前
【深度学习】通过nohup后台运行训练命令后,如何通过日志文件反向查找并终止进程?
linux·深度学习
Loo国昌2 小时前
【大模型应用开发】第二阶段:语义理解应用:文本分类与聚类 (Text Classification & Clustering)
人工智能·分类·聚类