【深度学习】【模型训练】输出轮数卡住不动【解决方案】

一、问题描述

如下图,笔者最近做一个Python深度学习项目时,输出迭代轮数时卡住:

如上图中所示,设置每10轮输出一次损失,相关参考代码如下:

python 复制代码
# run style transfer
max_iter = 200  # 最大迭代次数
show_iter = 10  # 打印间隔
python 复制代码
while n_iter[0] <= max_iter:

    def closure():
        optimizer.zero_grad()

        out = extract_layers(loss_layers, opt_img, model=vgg)
        layer_losses = [weights[a] * loss_fns[a](A, targets[a]) for a, A in enumerate(out)]
        loss = sum(layer_losses)
        loss.backward()
        n_iter[0] += 1
        # print loss
        if n_iter[0] % show_iter == (show_iter - 1):
            # show_iter = 10    9
            # 9, 19, 29, 39, 49
            print('Iteration: %d, loss: %f' % (n_iter[0] + 1, loss.data))

        return losswhile n_iter[0] <= max_iter:

    def closure():
        optimizer.zero_grad()

        out = extract_layers(loss_layers, opt_img, model=vgg)
        layer_losses = [weights[a] * loss_fns[a](A, targets[a]) for a, A in enumerate(out)]
        loss = sum(layer_losses)
        loss.backward()
        n_iter[0] += 1
        # print loss
        if n_iter[0] % show_iter == (show_iter - 1):
            # show_iter = 10    9
            # 9, 19, 29, 39, 49
            print('Iteration: %d, loss: %f' % (n_iter[0] + 1, loss.data))

        return loss

(代码参考书目:《Pytorch深度学习》,【印度】Vishnu Subramanian 著,王海玲 刘江峰 译,人民邮电出版社,北京,2019年4月)

二、解决方案

原本以为是代码运行过程中出现了问题,其实是Windows Powershell终端自身显示的问题。此时,按一次(注意仅一次Ctrl+C组合键,补全显示即可。(按两次会中止程序)。正确运行截图:

相关推荐
张较瘦_19 分钟前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程
小Q小Q1 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
yzx9910131 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
token-go1 小时前
[特殊字符] 革命性AI提示词优化平台正式开源!
人工智能·开源
cooldream20092 小时前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1185 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn6 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer7 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic7 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿7 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer