【深度学习】【模型训练】输出轮数卡住不动【解决方案】

一、问题描述

如下图,笔者最近做一个Python深度学习项目时,输出迭代轮数时卡住:

如上图中所示,设置每10轮输出一次损失,相关参考代码如下:

python 复制代码
# run style transfer
max_iter = 200  # 最大迭代次数
show_iter = 10  # 打印间隔
python 复制代码
while n_iter[0] <= max_iter:

    def closure():
        optimizer.zero_grad()

        out = extract_layers(loss_layers, opt_img, model=vgg)
        layer_losses = [weights[a] * loss_fns[a](A, targets[a]) for a, A in enumerate(out)]
        loss = sum(layer_losses)
        loss.backward()
        n_iter[0] += 1
        # print loss
        if n_iter[0] % show_iter == (show_iter - 1):
            # show_iter = 10    9
            # 9, 19, 29, 39, 49
            print('Iteration: %d, loss: %f' % (n_iter[0] + 1, loss.data))

        return losswhile n_iter[0] <= max_iter:

    def closure():
        optimizer.zero_grad()

        out = extract_layers(loss_layers, opt_img, model=vgg)
        layer_losses = [weights[a] * loss_fns[a](A, targets[a]) for a, A in enumerate(out)]
        loss = sum(layer_losses)
        loss.backward()
        n_iter[0] += 1
        # print loss
        if n_iter[0] % show_iter == (show_iter - 1):
            # show_iter = 10    9
            # 9, 19, 29, 39, 49
            print('Iteration: %d, loss: %f' % (n_iter[0] + 1, loss.data))

        return loss

(代码参考书目:《Pytorch深度学习》,【印度】Vishnu Subramanian 著,王海玲 刘江峰 译,人民邮电出版社,北京,2019年4月)

二、解决方案

原本以为是代码运行过程中出现了问题,其实是Windows Powershell终端自身显示的问题。此时,按一次(注意仅一次Ctrl+C组合键,补全显示即可。(按两次会中止程序)。正确运行截图:

相关推荐
野蛮的大西瓜2 分钟前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars61927 分钟前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen35 分钟前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝40 分钟前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界1 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术1 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409662 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
wydxry2 小时前
LoRA(Low-Rank Adaptation)模型微调
深度学习
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python