深度学习趋同性的量化探索:以多模态学习与联合嵌入为例

深度学习趋同性的量化探索:以多模态学习与联合嵌入为例

参考文献

据说是2024年最好的人工智能论文,是否有划时代的意义?

[2405.07987] The Platonic Representation Hypothesis (arxiv.org)

​arxiv.org/abs/2405.07987

趋同性的量化表达

深度学习技术的普及和数据共享促进了不同神经网络之间数据表示方式的对齐,这一趋同过程可以通过多模态学习和联合嵌入空间技术中的距离测量方式来量化。具体地,不同数据形态之间的距离在联合嵌入空间中越来越相似,这可以通过最小化某种距离度量(如欧氏距离)的损失函数来实现。公式如下:

Loss = ∑ i , j ∥ Embedding ( x i ) − Embedding ( y j ) ∥ 2 \text{Loss} = \sum_{i,j} \| \text{Embedding}(x_i) - \text{Embedding}(y_j) \|^2 Loss=i,j∑∥Embedding(xi)−Embedding(yj)∥2

其中, x i x_i xi 和 y j y_j yj 分别表示来自不同模态的数据样本, Embedding ( ⋅ ) \text{Embedding}(\cdot) Embedding(⋅) 表示将数据样本映射到联合嵌入空间中的函数, ∥ ⋅ ∥ 2 \|\cdot\|^2 ∥⋅∥2 表示欧氏距离的平方。

通俗解释

在深度学习中,我们经常需要处理来自不同模态的数据,比如文本和图像。为了让这些不同形态的数据能够在同一个空间中进行比较和计算,我们使用了多模态学习和联合嵌入空间技术。

想象一下,每个数据样本都是一个点,而联合嵌入空间就是一个大房间。我们的目标是将这些点放到房间里,让来自不同模态但相似的数据点靠得近一些,不相似的数据点则离得远一些。

为了实现这个目标,我们定义了一个损失函数,它计算了每个数据点在房间中的位置与其理想位置之间的距离。我们通过优化这个损失函数,调整数据点在房间中的位置,使得来自不同模态的相似数据点尽可能靠近。

具体来说:

项目 描述
数据样本 x i x_i xi 和 y j y_j yj,表示来自不同模态的数据,如文本和图像。
联合嵌入空间 一个共享的空间,其中不同模态的数据可以被比较和计算。
映射函数 Embedding ( ⋅ ) \text{Embedding}(\cdot) Embedding(⋅),将数据样本映射到联合嵌入空间中的函数。
距离度量 ∣ ⋅ ∣ 2 |\cdot|^2 ∣⋅∣2,表示欧氏距离的平方,用于量化数据点在联合嵌入空间中的距离。

过程推导如下:

  1. 定义损失函数

    首先,我们定义了一个损失函数,它计算了每个数据点在联合嵌入空间中的位置与其理想位置之间的距离。这个距离是通过欧氏距离的平方来量化的。

  2. 优化损失函数

    然后,我们使用优化算法(如梯度下降)来调整数据点在联合嵌入空间中的位置,以最小化损失函数。这个过程就像是在调整房间中的点,让它们尽可能地靠近其理想位置。

  3. 趋同性的量化

    随着优化过程的进行,来自不同模态的相似数据点在联合嵌入空间中的距离会逐渐减小,而不相似的数据点之间的距离则会保持较大。这样,我们就通过量化数据点之间的距离来实现了对不同神经网络之间数据表示方式对齐的度量。

综上所述,通过多模态学习和联合嵌入空间技术中的距离测量方式,我们可以量化深度学习技术的普及和数据共享对不同神经网络之间数据表示方式对齐的促进作用。这种趋同性的量化表达有助于我们更全面地理解深度学习模型之间的相似性和差异性。

关键词:深度学习、多模态学习、联合嵌入空间、距离测量、趋同性。

Keywords: Deep Learning, Multimodal Learning, Joint Embedding Space, Distance Measurement, Convergence.

相关推荐
zy_destiny6 分钟前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力
自由的晚风8 分钟前
深度学习在SSVEP信号分类中的应用分析
人工智能·深度学习·分类
大数据追光猿8 分钟前
【大模型技术】LlamaFactory 的原理解析与应用
人工智能·python·机器学习·docker·语言模型·github·transformer
一天八小时21 分钟前
计网学习———网络安全
学习·安全·web安全
玩电脑的辣条哥23 分钟前
大模型LoRA微调训练原理是什么?
人工智能·lora·微调
嵌入式小黑子27 分钟前
嵌入式学习第二十三天--网络及TCP
学习
极客BIM工作室30 分钟前
DeepSeek V3 源码:从入门到放弃!
人工智能
剑走偏锋o.O32 分钟前
Jenkins学习笔记
笔记·学习·jenkins
云上艺旅1 小时前
K8S学习之基础十四:k8s中Deployment控制器概述
学习·容器·kubernetes