昇思25天学习打卡营第8天 |昇思MindSpore ShuffleNet 图像分类学习笔记

1. ShuffleNet 网络简介

ShuffleNet 是旷视科技提出的一种高效卷积神经网络模型,旨在使用有限的计算资源实现高模型精度。其核心思想包括:

  • Pointwise Group Convolution(逐点分组卷积):通过对通道进行分组,每组卷积核仅处理输入特征图的一部分通道,从而降低计算量。
  • Channel Shuffle(通道重排):解决 Group Convolution 导致的信息交流不足的问题,通过通道重排增强信息交互。
2. 网络架构
2.1 Pointwise Group Convolution
  • 分组卷积(Group Convolution):将卷积核分组,每组处理输入特征图的部分通道。相比于标准卷积,分组卷积的参数量减少,计算效率提高。

  • 深度可分离卷积(Depthwise Convolution):每个卷积核只处理一个输入通道,计算量大幅降低。

  • 逐点分组卷积(Pointwise Group Convolution):每组的卷积核为1×1卷积,进一步减少计算量。

    python 复制代码
    from mindspore import nn
    import mindspore.ops as ops
    from mindspore import Tensor
    
    class GroupConv(nn.Cell):
        def __init__(self, in_channels, out_channels, kernel_size,
                     stride, pad_mode="pad", pad=0, groups=1, has_bias=False):
            super(GroupConv, self).__init__()
            self.groups = groups
            self.convs = nn.CellList()
            for _ in range(groups):
                self.convs.append(nn.Conv2d(in_channels // groups, out_channels // groups,
                                            kernel_size=kernel_size, stride=stride, has_bias=has_bias,
                                            padding=pad, pad_mode=pad_mode, group=1, weight_init='xavier_uniform'))
    
        def construct(self, x):
            features = ops.split(x, split_size_or_sections=int(len(x[0]) // self.groups), axis=1)
            outputs = ()
            for i in range(self.groups):
                outputs = outputs + (self.convs[i](features[i].astype("float32")),)
            out = ops.cat(outputs, axis=1)
            return out
2.2 Channel Shuffle
  • Channel Shuffle:将不同组别通道均匀分散重组,使得下一层能处理不同组别通道的信息,从而提高网络的特征提取能力。

    python 复制代码
    class ShuffleV1Block(nn.Cell):
        def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):
            super(ShuffleV1Block, self).__init__()
            self.stride = stride
            pad = ksize // 2
            self.group = group
            if stride == 2:
                outputs = oup - inp
            else:
                outputs = oup
            self.relu = nn.ReLU()
            branch_main_1 = [
                GroupConv(in_channels=inp, out_channels=mid_channels,
                          kernel_size=1, stride=1, pad_mode="pad", pad=0,
                          groups=1 if first_group else group),
                nn.BatchNorm2d(mid_channels),
                nn.ReLU(),
            ]
            branch_main_2 = [
                nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,
                          pad_mode='pad', padding=pad, group=mid_channels,
                          weight_init='xavier_uniform', has_bias=False),
                nn.BatchNorm2d(mid_channels),
                GroupConv(in_channels=mid_channels, out_channels=outputs,
                          kernel_size=1, stride=1, pad_mode="pad", pad=0,
                          groups=group),
                nn.BatchNorm2d(outputs),
            ]
            self.branch_main_1 = nn.SequentialCell(branch_main_1)
            self.branch_main_2 = nn.SequentialCell(branch_main_2)
            if stride == 2:
                self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')
    
        def construct(self, old_x):
            left = old_x
            right = old_x
            out = old_x
            right = self.branch_main_1(right)
            if self.group > 1:
                right = self.channel_shuffle(right)
            right = self.branch_main_2(right)
            if self.stride == 1:
                out = self.relu(left + right)
            elif self.stride == 2:
                left = self.branch_proj(left)
                out = ops.cat((left, right), 1)
                out = self.relu(out)
            return out
    
        def channel_shuffle(self, x):
            batchsize, num_channels, height, width = ops.shape(x)
            group_channels = num_channels // self.group
            x = ops.reshape(x, (batchsize, group_channels, self.group, height, width))
            x = ops.transpose(x, (0, 2, 1, 3, 4))
            x = ops.reshape(x, (batchsize, num_channels, height, width))
            return x
2.3 ShuffleNetV1 架构
  • ShuffleNetV1:包括输入卷积层、多个 ShuffleNet 模块、全局平均池化层、全连接层。

    python 复制代码
    class ShuffleNetV1(nn.Cell):
        def __init__(self, n_class=1000, model_size='2.0x', group=3):
            super(ShuffleNetV1, self).__init__()
            self.stage_repeats = [4, 8, 4]
            self.model_size = model_size
            if group == 3:
                if model_size == '0.5x':
                    self.stage_out_channels = [-1, 12, 120, 240, 480]
                elif model_size == '1.0x':
                    self.stage_out_channels = [-1, 24, 240, 480, 960]
                elif model_size == '1.5x':
                    self.stage_out_channels = [-1, 24, 360, 720, 1440]
                elif model_size == '2.0x':
                    self.stage_out_channels = [-1, 48, 480, 960, 1920]
                else:
                    raise NotImplementedError
            elif group == 8:
                if model_size == '0.5x':
                    self.stage_out_channels = [-1, 16, 192, 384, 768]
                elif model_size == '1.0x':
                    self.stage_out_channels = [-1, 24, 384, 768, 1536]
                elif model_size == '1.5x':
                    self.stage_out_channels = [-1, 24, 576, 1152, 2304]
                elif model_size == '2.0x':
                    self.stage_out_channels = [-1, 48, 768, 1536, 3072]
                else:
                    raise NotImplementedError
            input_channel = self.stage_out_channels[1]
            self.first_conv = nn.SequentialCell(
                nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),
                nn.BatchNorm2d(input_channel),
                nn.ReLU(),
            )
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
            features = []
            for idxstage in range(len(self.stage_repeats)):
                numrepeat = self.stage_repeats[idxstage]
                output_channel = self.stage_out_channels[idxstage + 2]
                for i in range(numrepeat):
                    stride = 2 if i == 0 else 1
                    first_group = idxstage == 0 and i == 0
                    features.append(ShuffleV1Block(input_channel, output_channel,
                                                   group=group, first_group=first_group,
                                                   mid_channels=output_channel // 4, ksize=3, stride=stride))
                    input_channel = output_channel
            self.features = nn.SequentialCell(features)
            self.globalpool = nn.AvgPool2d(7)
            self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)
    
        def construct(self, x):
            x = self.first_conv(x)
            x = self.maxpool(x)
            x = self.features(x)
            x = self.globalpool(x)
            x = ops.reshape(x, (-1, self.stage_out_channels[-1]))
            x = self.classifier(x)
            return x
3. 模型训练与评估
3.1 数据集准备
  • CIFAR-10 数据集:包含 60000 张 32×32 彩色图像,分为 10 类。训练集 50000 张,测试集 10000 张。

    python 复制代码
    from download import download
    
    url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"
    download(url, cache_dir='./datasets')
3.2 训练配置
  • 训练超参数

    • 学习率:0.1
    • 批量大小:128
    • 优化器:SGD
    python 复制代码
    from mindspore import context
    from mindspore.train import Model
    from mindspore.nn import SGD, SoftmaxCrossEntropyWithLogits, Accuracy
    from mindspore.dataset import Cifar10Dataset
    from mindspore import nn
    
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    
    net = ShuffleNetV1()
    loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
    optimizer = SGD(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
    metrics = {"accuracy": Accuracy()}
    
    model = Model(net, loss_fn=loss, optimizer=optimizer, metrics=metrics)
    
    train_dataset = Cifar10Dataset(dataset_dir='./datasets/cifar-10-binary/', usage='train')
    test_dataset = Cifar10Dataset(dataset_dir='./datasets/cifar-10-binary/', usage='test')
    
    model.train(10, train_dataset)
    eval_result = model.eval(test_dataset)
    print("Evaluation result:", eval_result)
4. 总结
  • ShuffleNet 的优势:通过分组卷积和通道重排显著减少计算量,提高效率。
  • 模型应用:适用于资源受限的设备,如移动端和嵌入式系统。

在学习 ShuffleNet 时,可以通过代码实践来深入理解其优化原理和应用场景,并通过比较不同网络模型的性能来评估 ShuffleNet 的实际效果。

相关推荐
准橙考典8 分钟前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
hong16168816 分钟前
跨模态对齐与跨领域学习
学习
阿伟来咯~1 小时前
记录学习react的一些内容
javascript·学习·react.js
Suckerbin1 小时前
Hms?: 1渗透测试
学习·安全·网络安全
水豚AI课代表2 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
聪明的墨菲特i2 小时前
Python爬虫学习
爬虫·python·学习
Diamond技术流2 小时前
从0开始学习Linux——网络配置
linux·运维·网络·学习·安全·centos
密码小丑2 小时前
11月4日(内网横向移动(一))
笔记
斑布斑布2 小时前
【linux学习2】linux基本命令行操作总结
linux·运维·服务器·学习
鸭鸭梨吖2 小时前
产品经理笔记
笔记·产品经理